MNHNCTEPCTBO SHEPTETHEN IN SAEKTPHONHAUMN CCCP T A A B T E X C T P O M N P O E K T

BCECOM3HMH FOCYAAPCTBEHHMH TIPOEKTHO-H3MCKATEABCKHH M HAYYHO-MCCAEAOBATEADCHNA MHCTMTYT « THEPPOCETOR POEKT

THROBON RPOEKT

Унифицированные железобетонные НОРМАЛЬНЫЕ ОПОРЫ ВЛ 110-330кв

> N 407-4-20/75 PABOUNE UEPTEKN TOM 1

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

(Корректировка на 1974 г.)

FAABHOH HHWEHEP Down

HAY TEXHNYECKORO OTAEAA

MABHLE CHELLHANHOTH N H C T M T Y T A

/с. РОКОТЯН /

N 3082 TM -T1

Cmp.

Aucmob (ФОРМ) - 3 (3)

Чертежей/форт)-10/22)

MOCKBA-1974.. r.

MINICTEPCTBO THE PRETINCT HOLD TO A B T EXCT PO H I POENT

ВСЕСОЮЗНЫЙ ГОСУДАРСТВЕННЫЙ ПРОЕНТНО-ИЗЫСКАТЕЛЬСКИЙ И НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ

« THEPROCETOR POERT »

CEBEPO - SARALHOE OTLENEHUE

THIOBOH POEKT

Унифицированные железобетонные **нормальные** опоры вл 110-330кв

N 407-4-20/75 Рабочие чертежи

TOM 1

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

(Koppekmupobka 1974 z.)

ГЛАВНЫЙ ИНЖЕНЕР	Olim.	/к. крю ков /
SAM. HAY.T EXHUYECKOR	· time)	В. ГАЛЬПЕРИН
	1. C 8/0	/к. синелобов/
ГЛАВНЫЙ СПЕЦИАЛИС	T T.O. Que	/A KYPHOCOB/
ГЛАВНЫЙ ИНЖЕНЕР	TPOEKTA Fluin	/с. штин /

Ленинград - 19 74 .. г.

состав проекта

Tom I.	Пояснительная записка	# 3082TMTI
Tom 2.	Рабочие чертежи промежуточ- ных опор ВЛ 110-150 кВ	% 3082TM-T2
Том З.	Рабочие чертежи промежуточ- ных опор ВЛ 220-330 кВ	₩ 3082 TM —T3
Том 4.	Рафия чертежи анкерно- угловых опор ВЛ IIO кВ	% 3082TM-r4
Tom 5.	Расчет промежуточных опор ВИ IIO-150 кВ	# 3082TM-T5
Tom 6.	Расчет промежуточных опор ВЛ 220-330 кВ	# 3082TM-T6
Tom 7.	Расчет анкерно-углових опор ВЛ 110 кВ	й 3082 ты-т 7
Tom 9.	Патентный формуляр (хранится в ПК СЗО)	₩ 3 082 1M-19

BOERTH-TI литера

СОПЕРЖАНИЕ ТОМА І

	Jecth
Глага I. Основные исходные положения проекта	6÷ 10
Глава 2. Краткое описание конструкций опор	10+17
Глава 3. Указания по применению опор	17+19
Приложения:	
I. Выписка из заключения по экспертиза на новизну и патентоспособность типового проекта	20+2I
2. Рыписка из патентного формуляра инв. № 3082тм—т9	22
3. Обзорный лист унифицированных вор- мельных железобетонных спор	ж 3082 тм-тІ- І
4. Табишы расчетных пролетов	ж 3082ты-тІ-2 жесты І+ 3
5. Тафицы нагрузок для расчета закреплений опор в грукте	# 3082TM-TI-39
6. Габаритн приближения токовелущих частей к телу опор	5 3082TM-TI-4 JECTH 1+6

3082TM-	-TI	7.	nct
AGTODA		1 3	22

Глава І. ОСНОВНЫЕ ИСХОЛНЫЕ ПОЛОЖЕНИЯ ПРОЕКТА

№ 1. Рабочие чертежи унифицированных железобетонных нормальных опор для ВЛ IIO, I5O, 220 и 330 кВ разработани Северо-Западным отделением института "Энергосетыпроект" в соответствии с "Основниям положениями унификации опор КЛ 35-500 кВ", утвержденными Решением № II3 Технического Совета Минэнерго от 7 сентября I967 года и на основании Технических решений (проектного задания) "Унификация металлических, железобетонных и деревянных опор ВЛ 35-500 кВ" (инв. № II79 тм), утвержденных Решением № 253 Главтехстройороскта и Технического удравления по эксплуатации экэргосистем от II имня I968 года.

Настоящий проект (корректировка 1974 г.), выпущенный по плану Госстроя СССР на 1974 г., содержит рабочие чертежи выпуска 1969 г. с некоторыми изменениями и уточнениями. Эти изменения учитывают опыт, накопленный в процессе применения опор новой унификации и их изготовления на заводах, а такие изменение ГОСТ ов и норм проектирования на 1 января 1975 г.

§ 2. Опори предназначени для установки в I-IV районах по гололеду и Ш районе по ветру и рассчитани на подвеску проводов по гост 339-59 марок:

AC-70; AC-95; AC-I20 и AC-I50 на ВЛ II0 кВ с проводами мални сечений;

AC-185: ACO-240 на ВЛ IIO кВ с проводами больших сечений;

AC-120; AC -150; AC-185 H ACU-240 Ha RH 150 KB;

ACO-300; ACO-400 Ha BJI 220 KB;

2A00-300 m 2AC0-400 ma BI 330 kB

Расчетние пролети для проводов указанних марок дани на листе 3082тм-тI-2 настоящего тома. На монтажных схемах дани пролети только для проводов "унифицированных" марок.

AC-95; AC-I50; ACO-240, ACO-300, ACO-400; 2ACO_300 H 2ACO-100.

٢	3082TH-91	TONK	
r	литеры	6	55

Опоры рассчитани на подвеску грозозащитных тросов из стальных каналов по ГОСТ 3063-66 для ВЛ IIO-I50 кВ марки С-50 (ТК-9.I) и для ВЛ 220-330 кВ марки С-70 (ТК-II).

- § 3. В объем проекта входят опоры следующих типов:
- промежуточние одностоечние свободностоящие для одноцепных и двухцепных ВЛ 110-150 кВ (9 типов), а также для одноцепных ВЛ 220 кВ (I тип);
- промежуточные портальные свободностоящие для одноцепных ВД 330 кВ (I тип);
- анкерно-угловие одностоечные на оттяжках для одноцепных ВЛ IIO кВ (I тип);

Область применения опор отдельных типов указана на обзорном листе (черт. № 3082тм-тI-I).

- Примечание: Специальные опоры для ВЛ IIO-220 кВ (промежуточноугловие, анкерно- угловие повышенные и пониженные, опоры для районов с частой и интенсивной плиской) выполняются по проекту и 3083тм с максимальным использованием унифицированных деталей настоящего проекта.
- § 4. Расстояния между проводами и тросами на опора, а также габарити приближений, приняти на основании действующих норм
 проектирования линий электропередачи ПУЭ-66 с учетом требований
 "Руководящих указаний для выбора расстояний между проводами и
 между проводами и тросами на опораж ВЛ 35-500 кВ по условиям
 пляски проводов", инв. В 3501тм, разработанных институтом Энергосетыпроект и ВНИИЭ и утвержденных Минэнерго.

В соответствии с "Руководящеми указаниями" опоры типов ПЕПО-6, ПЕПО-8, ПЕ220-I и ПЕЗЗО-I и УЕПО-I могут применяться на всей территории СССР, включая районы с частой и интенсивной пляской проводов.

3082TM-T	NA	CT
житера	7	22

Опори ПБ IIO-I, ПБIIO-2,ПБIIO-3 и ПБIIO-4 могут применятьсл только в районах со слабой и умеренной пляской.

Опоры ПБ II0-5, ПБ I50-I и ПБ I50-2 для районов с частой и интепсивной пляской требуют дополнительной проверки по таб-лицам 8-II "Руководящих указаний", при этом, есля горизонтальные смещения между проводами менее требуемых в вышеуказанных таблицах, то габаритная стрела провеса провода должна быть уменьшена до значения, при котором горизонтальные смещения проводов соседних ярусов соответствуют требованиям табл.8-II.

Все конструкции допускают безопасный подъем эксплуатаплонного персонала на опору под напряжением, согласно п.П-5-59 ПУЭ-66.

§ 5. Конструкции опор разработаны в соответствии с дейотпущими нормами проектирования линий электропередачи: ПУЭ-66 (гдава П-5), главами СНиП П-И. 9-62, П-В.І-62^ж, П-В.З-72, П-А.ІО--7І, а также "Инструкцией по расчету железобетонных опор и фунраментов к ним", инв. и 1070тм, и "Инструкцией по расчету стальных опор и фундаментов к ним", инв. и 1562тм.

Все элементы опор рассчитаны по методу предельных состоя-

В соответствии с Решением Минэнерго № II3 от 7 сентября 1967 г. для унифицированных опор в настоящем проекте приняты также следующие положения:

- а) При определении габаритов по внутренним перенапряжениям расчетный скоростной напор ветра принимается 0,1 у макс но не менее 6,25 кгс/м2.
- б) Нормативная толщина стенки гололеда для грозозащитного троса принимается такой же, как и для проводов:
- в) Анкерно- угловие опори, предназначениие для подвески сталеалиминиевих проводов сечением 185 мм2 и более, рассчитиваются по аварийному режиму на обрив только одной фази, а не двух фаз, как указано в пункте 2. п. П-5-100 ПУЭ-66.

3082TM-TI				ЛИ	CT	
ANTEDR					8	22

Таким образом, анкерно- угловые опоры ВЛ IIO кВ при подвеске проводов до AC-I5O включительно рассчитаны на обрыв двух проводов AC-I5O, при подвеске проводов AC-I85 и ACO-24O на обрыв одного провода ACO-24O.

§ 6. Эскизи верхней части опор с указанием воздушних изоляционных расстояний между токоведущими частями и телом опор приведени на черт. № 3082тм-тІ-4 настоящего тома, листы I•6.

Отклонения поддерживающих гирлянд определены при отношении длины весового пролета к длине ветрового пролета равном 0,75, при этом длини гирлянд принимались для нормальных условий прохождения линии, т.е. для районов без загрязнения атмосферы. Об условиях применения опор в районах с загрязненной атмосферой см. проект "Специальных опор", инв. 8 3083тм.

§ 7. При нормированных ПУЭ-66 расстояниях по вертикали между тросом и проводом в середине пролета по условиям защиты от грозовых перенапряжений и при высоте тросостоек, принятой на промежуточных опорах в настоящем проекте, максимальное напряжение в тросе не превышает 35 кг/мм2 на опорах ПБІІО-2 и ПБІІО-6; 40 кг/мм2 на опорах ПБІІО-1, ПБІІО-4, ПБІІО-8, ПБІБО-1, ПБІБО-2, ПБЕЗО-1, ПБЗЗО-1; 45 кг/мм2 на опорах ПБІІО-3. ПБІІО-5.

Эти значения максимальных напряжений в тросе указани в монтажных схемах опор и приняты в расчетах прочности тросостоек.

- § 8. Угол грозоващиты на опорах принят не более 30°.
- § 9. Шифровка нормальных железобетонных унифицированных опор выполнена с соблюдением нижеследующих положений.

Буквенная часть шифра определяет тип опоры и материал: П- промежуточная, У- анкерно- угловая, Б- железобетонная.

Первие знаки цифровой части шифра, расподагаемые непосредственно после суквенной части, сез тире, осозначают напряжение ВП, для которой предназначена опора: IIO-IIO кВ;

> 3082тм-ті лист литера 3 22

150-150 кВ и т.п.

После первой группы цифр через тире проставляется порядковый номер опоры, причем одноцепние опоры обозначаются нечетными цифрами, двухцепние- четными.

Для шифровки отправочных марок и отдельных элементов приняты следукцие буквенные обозначения:

- СК- железобетонная коническая стойка:
- СЦ- железобетонная цилиндрическая стойка;
 - жинтеппоп йннотобосоком
 - Б- стальные траверсы, тросостойки, оттяжки, их элементы, закладные детали для железобетонных конструкций.

Цифровая часть цифра отправочных марок (стоек, траверс ж т.п.) обозначает номер данного элемента.

При этом для железобетонных стоек после цифровой части вводится буквенный индекс, обозначающий вид продольной напрягаемой арматуры, а именно: П- проволочная; ПР- прядевая. Стойки со стержневой арматурой буквенного индекса не имеют.

Глава П. КРАТКОЕ ОПИСАНИЕ КОНСТРУКЦИЙ ОПОР

§ I. Разработанные в настоящем проекте унифицированные опоры состоят из железобетонных предварительно напряженных центрифугированных стоек и стальных траверс и тросостоек или тросодержателей.

Траверси и тросостойки прикрепляются к стойкам специальними сквозными болтами, для пропуска которых в армокаркасах стоек предусмотрены споциальные закладные детали.

§ 2. В опорах применени 7 типов железобетонных стоек: СК-I, СК-2 — длиной 22,6 м с диаметром 334/560 мм для одноцепных опор ВЛ IIO-I50 кВ и двухцепных опор ВЛ IIO кВ при подвеске проводов марок не свише АС-I2O.

3080TM-TI ANGT
ANTEPS 1022

СК-3- аналогичная облегченная стойка (заимствованная из проекта 5384тм) для одноцепных опор IIO и I50 кВ при подвеско проводов до АС-120 (вкл.) и двухценных опор при проводе АС-50

СК-4. СК-4А. СК-5 - плиной 26 м с пиаметрами 410/650 ммдля двухцепних опор ВЛ 110-150 кВ и одноцепных опор ВЛ 220-330 кВ:

СЦ-І - длиной 22,2 м с диаметром 560 мм для антерно-YPROBUX ONOP BII IIO KB.

> Примечание: Стойки СК-І, СК-2 и СК-З отличаются несущей способностью и количеством закламих петалей. Стойки СК-4 и СК-5 отличаются заклашними петалями и поперечной арматурой. СК-1 предназначены иля опор 110-150 кВ. СК-5 -для опор 220-330 кВ. Стойка СК-4А отличается от стойчи СК-4 закладными деталями и количеством напрягаемых стержней.

Стойки СК-I. СК-2. СК-4 и СК-5 разработаны в трех взаимозаменяемых вариантах армирования: стержневом, провслочном и прядевом, остальные только в стержневом варианте,

Стойки выпускаются с завода вместе с подплатниками, выполненными в виде плоских железобетонных дисков друх типоразмеров П-І и П-2 (соответственно для конических стоек с дламетром в комле 560 и 650 мм). Каждый подпятник приваривается на заводе к нижнему торцу готовой стойки через закладные детали с помощью 4-х коротышей. Пля имлиндрической стойки используется подинтник ПІ-З по чертежу 1623тм-т5 лист 66.

§ 3. Все промежуточные опоры представляют собой свободностоящие конструкции. Устанавливаемие непосредственно в грунт. как правило, в сверление котловани глубиной 3,0 и 3,3 м соответственно для стоек с диаметрами внизу 560 и 650 мм.

Анкерно- угловие опори IIO кВ одностоечной конструкции удерживаются в рабочем положении пятью оттяжками, крепящимися

3082TH-T	I		X	C.TC
литера			11	22

к анкерным плитам. Стойки нормальных опор заглубляются в грунт на 3 м.

Опоры рассчитаны на угол поворота линии до 60° и проверены на разность тяжений, возникающую при установке опоры на пикете с пролетом 100 м с одной стороны и габаритным пролетом с другой.

Допускается одностороннее крепление грозозащитного троса.

- § 4. Для закрепления стоек промежуточных опор в различных грунтах в необходимых случаях используются железобетонные ригели. Стойки закерных опор устанавливаются на специальные подпятники с разной площадью опирания. Анкерные плиты и подпятники
 для анкерных опор, а также ригели выполняются по отдельному
 проекту.
- § 5. Материал стоек центрифугированний железобетон. Бетон должен удовлетворять требованиям гл.СНиП I-В. 3-62. ГОСТ 7473-61 № ГОСТ 8424-72.

Марка бетона по прочности на сжатие 400 для стоек СК-I СК-2 и СК-3 (со стержневой арматурой) и 500 для остальных стоек.

Марки бетона по морозостойкости Мрз I50, по водонепроницаемости В-6.

Подпятники выполняются из вибрированного бетона марки по прочности на сжатие 300, по морозостойкости Мрз 150, по водонепроницаемости В-4.

При применении стоек в районах с температурой минус 40°С. и ниже марка бетона по морозостойкости должна быть не ниже Mp3 200.

Для напрягаемой продольной арматуры стоек применяются:
- стержневая горячекатанная сталь периодического профиля

308274	(-T]		AM	CT.
литера		7	12	ZE

класса A-IУ марки 20XI2Ц (ГОСТ 5058-65^ж, ГОСТ 578I-6I);

При отсутствии стали класса A-IV может быть применена сталь класса A-V марки 23x2I2T по ЧМТУ I-I77-67 (чертежи стоек см.проект % 5744 тм-11).

- высокопрочная арматурная проволока цериодического профиля класса Вр-II (ГОСТ 8480-63);
- семипроволочные арматурные пряди кл.П-7 по ЧМТУ/ЦНИИ ЧМ 426-61 диаметром I2 мм.

Спираль стоек выполняется из обыкновенной арматурной проволоки класса В-I (ГОСТ $6727-53^{**}$).

Остальная арматура строек, а также арматура подпятников из стали класса $A-\Gamma(\Gamma CT 578I-6I \cdot \Gamma CT 380-7I^{*})$.

§ 6. Материал металлических траверс, тросостоек и закладных деталей железобетонних стоек- стали углеродистие СТ 3 по ГОСТ $380-71^{\frac{14}{8}}$ или В 18Г ПС по ЧМТУ 1-47-67.

Категории сталей и тробования к ним, а также материал и типи болтов следует принимать по листам:

"Указания о материалах и общие примечания"

1616 3082TM-T2 JUCTU 8: 9

3082ТМ-ТЗ листы 7: 9

3082TM-T4 JDICTH 6: 8

Указания для темперетур ниже минус 40°C см. § II.

- § 7. Электроди для сварных швов типа 9 42 A 10СТ 9467-60.
- § 8. Оттяжки выполняются из стальных канатов по ГОСТ 3064-66.

3082TM-T]	ЛИС	T
ANTEDR	13	22

§ 9. Изготовление железобетонных центрифугированных стоек должно производиться в строгом соответствии с ТП-I-68, с учетом указаний § 5 настоящей главы в части назначения марок бетона по морозостойности и водонепроницаемости.

Изготовление и упаковка отальных траверс, тросостоек и других металлических элементов производится в соответствии с техническими условиями ТУ-34-004-73, монтаж — в соответствии с требованиями СНиП-Ш-И.6-67.

- § 10. Отверстия в элементах для болтов нормальной точности выполняются в соответствии с ТУ 34-004-73 на I мм больше номи-нального диаметра болта.
- § II. Металлоконструкции опор, предназначенные для установки в районах с расчетной температурой ниже минус 40° С, должны выполняться в строгом соответствии с указаниями СНиП П-В.З-72. Применяемые марки низколегированной стали для металлоконструкций, марки электродов и марки стали для болтов опор, устанавливаемых в районах с температурой ниже минус 40° С, указываются в проектах соответствующих конкретных линий.
- § 12. На всех опорах крепление поддерживающих гирлянд изоляторов к траверсам и тросовых подвесок к тросостойкам и тросодержателям на промежуточных опорах осуществляется при помощи стандартных узлов типа КГП, выпускаемых заводами треста "Электросетьизоляция" и поставляемых в комплекте с поддерживающей гирляндой изоляторов или тросовой подлеской.

Крепления натяжных гирлянд на анкерно- угловых опорах ВЛ IIОкВ выполняются при помощи скоб СК-I2, для чего предусмотрены соответствующие отверстия.

ТУ 34-004-73 - Технические условия. Конструкции унифицированных стальных опор линий электропередачи (изготовление, приемка, поставка)

3082 TH	万百〇丁	
дитера		14 22

- \$ 13. Для ограничения крутящего момента действующего на тросостойки при обрыве троса, кронштейни тросостоек имеют стопорние болти, которые срезаются при усилии 450-500 кг. Кронштейны в этом случае поворачиваются и обрывное усилие действует в плоскости рамы тросостойки, исключая крутящий момент.
- § 14. В целях удобства монтажа проводов и тросов в поясних уголках траверс, а также в элементах тросостоек и тросодержателей предусматриваются отверстия, которые могут быть использованы для закрепления монтажных приспособлений.
- § 15. Заземление опор осуществляется через специально предусмотренные для этой цели ненапряженные продольные стержни армокаркаса стоек. К этим стержням привариваются закладные детали, через которые пропускаются сквозные болты траверс и тросостоек. Внизу стоек, на расстоянии 3,2; 3,5 м от комтя, от стержней заземления имеются выходы на поверхность стойки закладных деталей Б202, к которым приваривается контур заземления.

Заземление грозозащитных тросов на опорах осуществляется через зажимы ЗПС-50 и ЗПС-70, для которых на тросостойках и тросодержателях имеются соответствующие отверстия.

- § 6. Металлические траверсы промежуточных одностоечных опор имеют следующие вылеты:
 - а) для ВЛ IIO кВ- 2,0 и 3,5 м;
 - б) для ВЛ 150 кВ 2,5 и 4,0 м;
 - в) для ВЛ 220 кВ 2,8 к 4,8 м.

Для каждого из указанных напряжений короткая траверса предс. вляет собой конструкцию из поясов с распорками и одной тяги, длинная траверса помимо этого имеет шпренгельные жесткие тяги, поддерживающие пояса по середине вылета. В целях обеспечения пространственной геометрической неизменяемости шпренгельные тяги разызаны раскосоми. Длина основной тяги длиных траверс регулируется.

C082TM-		ZNC	T
Kuisba		15	22

Применение траверс одного выдета на разных высотах (от земли), а также на разных конических стойках, имеющих различный диаметр в местах прикрепления траверс, потребовало принятия специальных мер, сводящих до минимума или исключающих вообще погибы поясов траверс в рабочем положении.

С этой целью, а также с целью унификации металлических элементов траверс некоторые детали (распорки поясов и раскосы штренгельных тяг), используемые в опорах разных типов, или в траверсах одного вылота при разних вностах крепления на конических стойках, имерт дополнительные отверстия. Поэтому сборку траверс на опорах ВЛ IIO-220 кВ необходимо верти в определенной последовательности, которая должна быть доведена до сведения производителя работ. Последовательность эта заключается в том. что сначала собираются основние элементи траверс- пояса и тяги (в том числе и шпренгельные). Базы траверс выбрани таким образом, что при присоединении траверс к стойке пояса стягиваются сквозными болтами, которыми они закрепляются, без применения каких-либо домкратов или усилий монтажника. Затем устанавливаются распорки поясов и раскосн шпренгельных тяг. при этом используются те два отверстия в распорке или раскосе, которне наиболее подходят при соблюдении прямолинейности пояса и шпрен-TRT XHHAROT

При монтаже траверс и тросостоек на опорах следует пользоваться наряду с монтажной схемой сборочными чертежами траверс и тросостоек, которые представляют собой укрупненные узлы конструкций, где указано необходимое расположение элементов и монтажных болтов.

§ 17. Металлические детали опор, как правило, должны быть опинкованы.

При невозможности выполнить горячую опинковку металлоконструкций последние должны быть окращены в соответствии с требованиями гл. Снип II-И.6-67.

ı	3082 TM-T	I	1.87	CT
	литера		16	22,

§ 18. Подьем монтеров- верхолазов на все железобетонные опори, до нижней траверси в том числе и на опору ПБ 330-І при отсутствии внутренних связей, осуществляется посредством специальных инвентарных устройств (монтажные лестници, специальные когти и т.д.), утвержденных Минэнерго для этой цели. Для подъема верхолазов на опору ПБ 330-І при наличии внутренних связей предусмотрены специальные лестници, входящие в конструкцию опори. Такие же лестницы предусмотрены на всех опорах выше нажней траверсы.

Глава Ш. УКАЗАНИЯ ПО ПРИМЕНЕНИЮ ОПОР

- § I. Для линий проходящих в I-IУ районах по гололеду и в Прайоне по ветру при подвеске проводов и грозозащитых тросов марок, перечисленных в гл. I, § 2 выбор конструкции унифицированных опор производится непосредственно по обзорному листу (чэрт. № 5082тм-тI-I) с использованием величин расчетных пролетов, указапных на монтажных схемах опор и на черт. № 3032тм-тI-2 полонительной записки.
- § 2. Габаритние пролети l_{70} приведениие на монтахних схемах и на черт. В 3082тм-тІ-2, определены по "Систематическим расчетам сталеалюминиевых проводов" (инв. В 1950 тм) при максимальном скоростном напоре $q_0 = 50 \text{ кг/м}^2$ и округлены до значений кратных 5 м. При этом длини поддерживающих гирлянд принимались равними: для ВЛ 110 кВ- 1,3 м; для ВЛ 150 кВ- 1,7 м; для ВЛ 220 кВ- 2,4 м и для ВЛ 330 кВ- 3,4м.

При применении опор на конкретных линиях габаритные пролеты должны быть уточнены в соответствия с фактической длиной гирдянды.

- § 3. Весовые пролеты, как правило, принимались равными ℓ_{ee} = 1,25 ℓ габ. или 1,25 ℓ_{eemp} ,если ℓ ветр. < ℓ габ.
- § 4. Ветровие пролети, светр., определени, исходи из прочности железобетсиных стоек и приведены на монтажних схемах.

3082TM	-T]		JIM	<u> </u>
литеря	Ι		17	22

- § 5. При применении опор ПБ II0-I. ПБ II0-2. ПБ II0-6 и ПБ I50-I с облегченными стойками СК-3 расчетные пролеты не должны превнщать значений, приведенных в настоящей записке на листе 3082тм-тI-2, пист 3.
- § 6. Промежуточные опоры ВЛ IIO-T50 кВ допускают угол поворота ВЛ до 3-х градусов при ветровых пролетах не превышающих значений, приведенных в настоящей записке на листе 3082тм-т1-2,
- § 7. Прочность стойки СК-5 в схеме опоры ПБ 220-1 в целях экономичного использования опоры в ТУ районе гололедности при подвеске проводов АСО-400 требует понижения нижней траверсы на I,5 м. Таким образом, высота до нижней траверсы в опоре ПБ 220-1 при указанных выше условиях составит 14,5 м.
- \$ 8. При прохождении ВЛ в условиях, отличных от указанных в настоящем проекте, а также в случае подвески проводов больших марок, следует руководствоваться нижеследующими положениями.
- а) При выборе типа унифицированных опор рекомендуется рассматривать несколько вариантов и принимать оптимальный вариант по технико- экономическим показателям.
- б) При подвеске более тяжелих проводов, чем указано в настоящем проекте, необходимо ослабить тяжение в проводе и уменьшить ветровие и весовые пролеты до величины, при которых нагрузки на опоры не превышают принятых в расчете.
- в) При установке опор в районах со скоростным ветровни напором более 50 кг/м2 необходимо проверить величины воздушных промежутков от проводов до элементов конструкций и только при условии соответствия всех промежутков нормативным величинами следует определить предельные величины ветровых и весовых пролетов в соответствии с рекомендациями предыдущего пункта.

При этом следует иметь в виду, что применение опор с пролетами менее габаритного неэкономично и поэтому рекомендуется

L	3083	TM=	TL		RKS	T
7	INTE	20			IB	Z

в этих случаях понимать уровень крепления проводов, используя для крепления траверс закладные детали, предусмотренные в стойках.

г) При установке опор в более легких условиях, чем это предусмотрено в настоящем проекте (например, при подвеске более легких проводов), рекомендуется принимать:

§ 9. Закрепление опор в грунте производится в соответствии с типовой работой инв. № 5385тм.

Для улучшения условий закреплений в грунте портальной опоры ПБ 330-I разработаны внутренние связи, которые следует устанавливать при креплении опоры в слабых грунтах. В этом случае закрепление выполняется по нагрузкам для опор с внутренними связями.

3082TM-	-T.I.	 ЛИС	T.
литера		18	22

виписка

из заключения по экспертизе на новизну и патентоспособность типового проекта

При разработке типового проекта "Унифицированные железобетонные нормальные опоры ВЛ IIO+ 330 кВ (корректировка I974г.) инв. 16 3082тм-т2, т3, т4 были просмотрены следующие патентные материалы:

- а) СССР перечень патентов, действующих в СССР по состоянию на I января 1973 г. и оюдлетени "Открития изобретения промышленные образцы, товарные знаки" с I января 1973 г. по 30 октября 1974 г. по классам: EO4C 3/30, 3/34, 5/00; EO4h, 12/00; HOI в 17/00; HOIt; HO2g; 7/00
- б) Болгария— библиографический сборник действующих патентов по состоянию на I июня 1965 г. и библиографические патентные бюллетени за 1966 г., 1968: 1972 г.г. и бюллетени с № I по № 5 за 1973 г., класси те же, что по СССР;
- в) Венгрия- ополнографические соорники действующих патентов по состоянию на I января 1966 г. и ополнографические патентные ополнетени за 1966 г., 1968+ 1972 г.г. и ополнетени с И I по № 12 за 1973 г., класси те же, что по СССР;
- г) ГДР- библиографические сборники действущих патентов по состоянию на I января 1966 г. и библиографические патентине бюллетени за 1966: 1972 г.г. и бюллетени с № I по № 24 за 1973 г., классы те же, что по СССР:
- д) Польша- библиографические сборники действующах патентов по состоянию на I января 1966 г. и библиографические патентные бюдлетени за 1966 г., 1968: 1972 г.г. и бюдлетени с № I по № 6 за 1973 г., класси те же, что по СССР:
- е) Румния- библиографические сборники действующих патентов по состоянию на I января 1966 г. и библиографические

20827	Z-TL	אנג	C.T
JIMTEL		20	22

патентные содлетени за 1966 г., 1968 г.т. и содлетени с # I по # 12 за 1973 г., классы те же, что по СССР:

- ж) Чекослования- библиографические сборники лействующих патентов по состоянию на I января 1966 г. и библиографические патентные былетени за 1966 г., 1968 г., 1969 г., 1971-1972г.г. и боллетени с № I по № 12 за 1973 г., класси те же, что по CCCP:
- з) Югославия- бибинографические сборники действующих патентов по состоянию на І января 1966 г. и библиографические патентные былиетены за 1966 г., 1968+1972 г.г. и былиетены C M I no M 6 sa 1973 r., knacch to me. To no CCCP.

Патентные материалы просмотрены по патентным фондам СЗО института "Энергосетыпроект" и библиотеки Ленинградокого центрального боро технической информации.

Кроме того, просмотрены книги и реферативные журналы по ланной теме с 1962 г. по 14 ноября 1974 г.

В работе использовано авторское свидетельство # 192387 "Портальная опора для высоковольтных линий электропередачи". заявитель- СЗО Энергосетыроект. Авторы: Криков К.П., Курно-COB A.M. M WITHH C.A..

В процессе разработки проекта поданных заявок на предполагаемие изобретения не имеется.

Общие выводы: типовой проект "Унифицированные железобетонные нормальные опоры ВЛ IIO+ 330 кВ (корректировка I974 г.) инв. № 3082 м-т2, т3, т4 обладает патентной чистотой в отношении СССР, Болгарии, Венгрии, ГЛР, Польши, Руминии, Чекословакии и Вгославии.

Выписку составил CT. HIMEHED

/KAILITERCKASI/

I4 ноября I974 г.

30827	1-7	T	-	J	HCT
литера				21	22

внписка

из патентного формуляра инв. В 3082тм-т9 Типового проекта "Унифицированные железобетонные нормальные опоры ВЛ IIO+330 кВ " инв. В 3082тм-т2, т3, т4

Данный проект обладает патентной чистотой в отношении СССР, Болгарии, Венгрии, ГДР, Польши, Румынии, Чехословакии и Югославии.

В разработанном проекте все составные элементы проекта обладают патентной чистотой. Комплектующих изделий не обладающих патентной чистотой не имеется.

В связи с разработкой данного проекта, поданных заявок на изобретения, или полученных авторских свидетельств не имеется.

Патентный формуляр составлен 14 ноября 1974 года.

Проверка патентной чистоты проводится в связи с новой разработкой проекта и возможностью применения его в социалистических странах.

Выписку составил ст.инженер

/KATUEBCKAR/

I4 ноября I974 r.

3082	eΙ		XX	CT
литеры			22	22

OGSOPHOIU AUCM

унифицировинных железобетонных нормильных опор ВЛ 110,150,220 и 330 кв

Hanpatenue BA (KB)				110						150	220	330
Цепносто	094	OYENHOIE				D & S X Y EUN	6/8		Ognoyennois	DEYXUENHOIC	DONO	DYENHUE
Mun onopbi	Neames	# 4 MOYNOIC		AHKEPHO- YPAOBOIE				П	POME HYMO	4 H 61 E		
Paude no ronanegy	<u> </u>	ī	/īl - /Ÿ	I, I, III, IY	I - 2	7	<i>III</i> − <i>I</i> v	I - 1 1 1 - 10	į	I, II, II, II		
HOPKU NPOBOGOB	AC-95; AC-150	ACO-240	AC-93 AC-13 ACO-2	0	AC-95	ACO-240	AC-95	AC-150 A	C-150, ACO-240		ACO-300 ACO-400	2 × ACO - 300 2 × ACO - 400
Marka reosasa- wummaro meoca				C-50								C-70
Эскиз Опоры	S S S S S S S S S S S S S S S S S S S	20 S S S S S S S S S S S S S S S S S S S	3.0 20 14.5	22 C.	30 10 50 10 50	OF O	25 25 20 25 25 25 25 25 25 25 25 25 25 25 25 25	20 40 05 05 05 05 05 05 05 05 05 05 05 05 05	30.00.00.00.00.00.00.00.00.00.00.00.00.0	25 25 07 4.0 00 07 2.5 2.5 032 032	2.5 2.5 0.7 (2.7) (2.5)	CAS.
Wugar onopol	110-1	NE 110 · 3	118 110-5	86110-1	16110-2	NE 110-4	16110-6	110-8	N6 150-1	ns 150-2	116.220-1	15 330-1
N чертеорга понтаорной схеты	3088 TM - 7 2 - 1	30887W-72.2	308274-72-3	3082 rm-r4-1	3082 TM-72-4	308874-72-5	30827M-72.6	3082 TM-72-7	JO88 TM - T 2 -8	3082TM - T 2-9	3082 TM - T3 - 1	308R TW-73 - 23
Socmoticnesacerona	1.66	1.01	1.61	e./	1.81	2.62	1.68	2.52	1.81	252	2.52	5,04
Bec IEMOJAQKOMOMPUK-	0,216	0.2/6	Q 25 5	1,586	0,522	9422.	0,522	0,484	0,316	0,596	0,447	1,118

Примечание:1. Все опоры устанавливаются в районах по ветру до <u>й</u> включительно (9.°50кг/м²) г Всс неталла для опоры ПБ 330-1 фан вез учета веса внутренних связей и лестницы.

nenste		Boicomak	meeno				·								MADE		10		· · · · · · · · · · · · · · · · · · ·		***********									, 	-						
' 1	İ	T do		Neonem	SC.	70		AC	- 95		A	C-120			AC- 1.	50		AC-	185		AC-	240		ACO.	300		ACO	1- 400	2	۾ ھے	ACO-	300	2	× ACO	1-400	2	
e BA)	'		• • • • • • • • • • • • • • • • • • • •					T-1	Po	10401	70	1000	neg	4 / 6	10-	Sem	~ei	noom	OPAC	MOCI	mora)															MANNERON
x6]	ONOP	mpabereo.	247		<i>I I</i>	17	12	7 1 1	III	IV	<u> </u>	1 iii	12	7	<u> </u>	17	7	7	ī Ir	1 7	<u> </u>	11 1	7 5	7	iii	7 7	7	17)	12	7	ē !	£ 12	I	Ā	iii	14	
			· · · · · · · · · · · · · · · · · · ·	Croo.	275 21.	5 -		24	0 -	1-1	300 276	> -	- 3	00 2	85 -	- -	-	-	-]-	1-	-	_ -			-		- -		-	-	-] -	- -		-	-		
1	16110-1	14,5	7, 2	Esemp.	385" 300	,•		74 333	-		350 350	2 -	- 3	25 3	25 -		-	-		1-	_	- -	- [-	-	_	_] -		_		-				_		-	
1				l'Sec.	345 276	0 -		5 300	<u> </u>	-	375. 340	2 -	3	753	55		1	-	-	<u> </u>	-			1-1	-				-	_	-					_	
Ī				Crub.			-			1-1	_ _			- -	- -		1	95	- -	295	295	- -					- -		_	-					-	_]	
ŧ	16110.3	14,5	7,2	CBema.			-			-		1-1	-	_ _		-	350		_ _	335		- -		- -		_ _											
- 1				Chec.			_	-1	-			-					30				370			 - 				-					 -		-		
1		1		Crus.	- -	175		3	195	165		ا کی چین		_		0 210			55 220		-	260 23		+				+	 - -					+			
1	15110-5	14,5	7, 2	Comp.			205"		250			220				0 225			20 275			255 20		+			_	+=	 -				-	+			
		\		Cocc.	250 20	220	780	20 22	-		275 250		_			 *	+			+	-	323 C3		+-+				+=	-	-							
				Crad.	200 28		-	24		·	20 220			-		-	1-1	_	_ _	-	_	_ _		+-+	_		_		-	-	_			-			
110	115 110-2	13,5	6, 2	Core.	310 25			e 27		4	275 278						1 -			+-	_			1-1	_	_ _	_	_	 -	_				+			
				lrao.				-11-		-		1					275	275		276	275			+	_		+-		 				-				
	115 110-4	13,5	6,2	Csemp.	1	_	-	11 -	1-	-	- -	- 1	- -	- .	- -	_	285	·			275	- -	- -	1-1	_	_ -	-		1-	_	_ -	_ _	. _	1-1			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,	-,~	C 800.	- -	-	-	T -	_	-		-	_			_	345		- -	330	330	_	- -	1-	-	- -	-	-	-	-		- -	-		-		
				Cros.		135	110	1 -	150	125		170	145	- [_	1-	-	- -	1 -		-	- -	-	-		-	_	T -	-	-		-	1-	-	_	
	115110-8	11,5	4,2	Csemp.		185		\mathbf{H}	175	140		150	130	-]	- -	-				-		- -	-	-	-	- -	-	-	-	-		_	-	-	-		
,			<i>"</i>	Csec.		110	135		185	155		210			_			_			_			-				_						-		-	
				Cras.		-					300 275	210	180 30	10 2	و و ح	5 190	-	- 6	35 205	<u> </u>	_	240 21	5 -	-	-	- -			_	-			-	_	-	-	
	16110.8	13,5	6,2	Eseme.				1 -			315 315						- 		40 200	~	****	235 19					-	<u> </u>		-	_ .	- -			_	_	
				lecc.	1-1-			4 -	 -		375 345	_				-	· 		95 255	-		295 24		1-1	-	_ _			<u> </u>	-					-	-	
				Crus.	-						250 23													-		_ _					_ :	- -	1=				
	175 150-1	13,5	5,3	Coeme.			-		 - -		350" 320													1-1				<u> </u>						1-1			
150				Prec.	-		-	1	-		310 283									_	-			 - 	-		+-		 - -	-							
,,,,	53.50			Cros.					-		250 232 325 323													 - 				 -	 -		-			1-1			
	116150-8	13,3	5,3	Comp.			-				310 29.					_								+-+					 - ·					1-1			
			 	Psec.	-		-			+	270 23.	1240	200 0	/0	00 20	5 2 2 0	1370	7012	70 200	303	505							+	 -	-				4	-		
	1	16,0	8,6	fras.	++-				-	 _ 		+ = -					++			+=-				360										-			
		1 ,0,5	0,0	l Bene.	+=+=				 	+		++	_			-	1	_		 				360										+=-			
220	115 220-1		 	Cros.		- -			—	1-1	_ _	1			-		1-1		_ _	1	-		- -	-			- 380	-	220						-		
		14,5	5,1	Esemp.	1-1-		_	-	-	-	- -	-	-	_	_ _	-	1	-		-				 - 		- -		_	225	-	_	_ _		+			
				C Sec.		- -		_			- -	-	-	_	- -	-	1-1	_		-	-	_	- -	1		_ _		-	275	-		_ _	-	+			
			 	Cros.		- -		_		-	- [-		-	_	_ _	_	-	-		-	-	- -	1-	1-1	-	- -		 -		335	35 2	25 26	5 935	335	300	285	
330	116330-1	19,5	8, 5	Csemp.		-] -	_		_		- -			-		_	-	-	-1-]-	-			1-1	-	- -	-	-					5 335		<u> </u>		
-	1		1	CSec.		- -	_	-	-	-	- -	-	-	-		-	-	-	- -	 -	-	- -	-	1-1	_	- -	_						0 420		····		

2. Опора ПВ 110-8 с продуки АС-120 применяется при необжодимости увеличения ветровых пролетов.

3. Пролемы отмечене * 4, определены при высоте до нижней траверсы 14,5 м.

JCM MOSAUYO POCVEMNOIX PRODEMOS

Ветровые пролеты для промежуточных железобетонных опор 110-150 кВ при малых углах поворото ВЛ

Шифр опор	Марк	a npohoda	AC	-70	AE	- 9 5	AL	`- <i>120</i>	AL	-150	AC	-185	ACC	7-240
		по голопеду	Ī	<u> </u>	Ī	1	I	1	I	1				
	Габар	umhwii nponet	285	240	285	240	300	270	300	285				
Π6 110 - 1	38	U°	385 ×	300 *	375	300 *	350	350	325	325				
(CK-1)	200	/°	385 *	300 *	355	300 *	330	330	300	300				
1211	Bempobou nponem (n)	2°	<i>3</i> 85 *	300 *	340	300 *	310	310	280	280				
	Be	<i>3</i> °	<i>385</i> *	300 *	320	300 *	290	290	265	265				
	Paion	no zananedy					I	17	I	1	I	1	I	1
05 U0-7	Γαδαρι	umabiú nponem					300	270	300	285	305	295	295	295
NB 110-3	. D. E.	0°					400	280	390	390	350	350	335	335
(CH-2)	2000	1°					375	360	365	365	325	<i>3</i> 25	305	305
	ветровой пролет [н]	2•					355	345	345	345	300	300		
	38	3°					335	330	325	325				
	Райан	no zononedy	<u>II</u> J	IV	<u>I</u> I)	Ñ	ĪĪ	Ŋ	Ü	Ŋ	<i>IJ</i>]	ĺν	111	ĪĬ
		тный пропет	175	/45	195	165	225	190	240	210	255	270	260	230
175 110 - 5	Bempobai npanem Enj	0°	245 #	205*	275*	230 *	305	235	280	225	270	210	255	205
(CK-En U	go	1°	245 *	205 *	275 *	550	260	210	255					
(CK-2n U CK-2np)	Sup	2°	245 *	205 *	275	210	240	195						
		3.	245 ×	205 *	280	200	225	150						
		no eononedy					I	1	1	1	I	1	I	1
N5 HD-4	antopl	umhbili nponem					275	250	275	265	275	275	270	275
	rbai m [H]	N°.					335	335	3075	305	275	275	275	275
(CK-4)	go wa	1°					310	310	285	285				
•	ветро, пролеп	ه م					290	290			-			
	20	<i>3</i> °					275	275						
	POUDH	no eononedy					111	1 1 V	1	<u> </u>	<u> </u>	Ī	<u> </u>	<u>[v</u>
NS 110-8	cuoopu	приный пропет					210	180	225	190	235	205	240	215
Iru li - ii	Sou						260	210	258	205	240	200	235	195
(LN-4 N U	ma DOC	- 10					235	195	225					
ПБ 110-8 (СК-4 п и СК-4 пр)	Ветровой прапет [м]	2°					250	180						
	26	<i>3°</i>							-					
	1 40011	по гололеду					I I	W W	I !!	<u> </u>	I U	<u> </u>	I	I I
DE JEO J	cooapu	тный пролет					4	190 165		100				
ЛБ 150 - 1 (СК-2)	ŽŽ.						-	285 23L	1 4 5			280 220	335 335	280 205
(CK-2)	ioog em	1"						265 215	T					
	Ветровой пропет Сн.Э	2°						780 200		1				
	196	<i>3</i> °					350 321	240 185	325 325	220 175				

Примечания

- 1. Ветравые пролеты, абазначенные *, ограничены величиной выт. 1,4 · ваб.
- 2. Опары ПБ На 2 и ПБ На-6 не дапускают углав поворота ВЛ по
 габаритам приближения такове
 дущих частей к телу апары.

25

N 3082 1H - 7 1 - 2 //UCM //UMepa | 2 3

Маблица пролетов для опор, устанавливаемых в 💯 - 💯 районах гололедности на стойках со стержневым армированием

							M	apk	U	np	0000	र ते व	В							Control of the control
Ċ	Шифр	7ä/	AC	- 70	AC	- 95	AC -	120	AC	- 150	AC	- 185	ACO	- 240	ACO	- 300	ACO	- 400	ACO	- 500
doud.	מָסחט	Пралета					T01	nanel	ने भक्षा ह	P	QÜOH	61								
9		M	<i>[<u>]</u>]</i>	Ĩ	ĨĮ	ĮĮ.	Ũ	ĮŸ	1	<u>Į</u> į	/Į	ĨŶ	<u>I</u> Í	Ιŷ	ĮĮ	/Ī/	<u>[][</u>	Ιν̄	<u> </u>	IÑ
	DE UD E	€ 206	175	145	195	165	225	190	240	210	255	220	260	230						-
	NB 110-5	L Bem	245 *	205 *	275*	230*	285	220	270	210	255	200	245	185						-
	(CK-2)	2 Bec	220	1811	250	200	280	240	300	260	320	250	305	235						_
_	95 40 6	E eas	135	110	150	125	170	/45		•				~						I –
onopei	Π5 110-6	£ Bem	165	125	160	125	155	120	_										_	
DU	(EK-1)	l Bec	170	135	190	/55	190	150											•	
0	Π5 H0-8	£ 205	<i>1</i> 55	135	180	/55	210	180	225	190	235	205	240	215				****		
	(CK-4A)	l Bem	230 *	190 *	250	195	240	190	230	/85	225	180	215	170						
به	(61. 71.)	L Bec	210	170	225	220	260	225	290	230	280	225	270	215						
4.44.18	Π5 15ū - 1	l eco					190	165	205	180	215	190	225	200						-
160	(CK-2)	l Bem					265 *	220	285	210	270	195	255	190						T
Промежуто	(CII L)	L' Bec					235	205	255	225	270	235	280	230						
×	N5 150-2	€ 200	1			_	190	165	205	180	215	190	225	200						
ME	?	l bem					250	195	250	185	230	180	215	170				*		
20/	(CK-4A)	l Bec					240	205	25 5	225	270	225	210	215						 -
`	75 227 J	£ 200	_						-						260	230	280	221)	255	20
	116 220 - 1	l. Bem							_			-	-	-	280	215	260	205	240	190
<i>m</i> –	(CK-4R)	E Bec										_		_	325	285	340	275	300	260

Паблица рисчетных пролетов для нармальной примежуточной опоры пь на-1 с облегченной центри-

αβαдαβ ΑC-120 Σαύαμοι	0
	0
DaliaHbl	
,	
Ī	Ĵ
0 300 2	270
5 300 2	270
9 375 3	40
-	

Примечание: Ветравые пралеты, обозначенные * аграничены величиной $\ell_{\it bemp}=1,4$ $\ell_{\it cab}$.

26

N 3082 TM - T | - 2 | Aucm Aumepa | | | 3 | 3

Нагрузк свободн	и для ра	מנישם ט	ma nop	3U B	KDEI	nnen 10 ÷	10Ú 330	מא פ	ome	жут	MAH	6! X	Mas	ริกบนุร	7 1	Ногру	:	
Шифр	Шифр				MUD	Ka	η	ולטכ	nda					Wud				
อกอpы	<i>เ</i> ทบนหน	AC	70	AC-	95	RC	- 1211	AC	150	ACO	-240	l	,	2×AL		Опоры	ŀ	
5GP		M	MH	M	MH	M	MH		MH	M	MH	M	MH	M	MA		ļ	
חה אח- ז	[K-1	21.1	17,6	20,85	17,4	22,75	18,95	28,92	23, 1								ł	
Π5 110-1	CK- 3	21,1	17.6	20,85	17,4	22,75	18,95										١	
	CK-1n CK-1np	17,4	14,5	17,20	14,33	19,8	16,30	24,82	20.7							£5 HD-1	ŀ	
	CK-2	34,62	28,9	34,62	28,9	34,62	28,9										١	
NE 110-2																	ľ	
	[4-54 [4-54	28,73	23,9	28.73	23,3	28,73	23,90					_						
NB HU-3	CK-2									34,62	28.9							
110 110	CK-2 np									28,73	23,9							
N5 HQ-4	CX-4			a						47,32	39,4							
און טון	CK-40 CK-40p									43,10	35,9							
ne un e	CK- 2	30,0	25,11	34,62	28.9	34,62	28,9	34,62	28,9	34,62	28,9							
N6 H0-5	CK-211	24,9	20,8	28.7	23,9	28,73	23,9	28.7	23,9	28,73	23,9							
	CK-1	28,92	24,1	28.92	*24,1	28,92	24,1											
ΠБ H0 - 6																		
	EK-IND	24,82	20,7	24,82	20,7	24,82	20,7											
DE NO 0	CK - [np CK - 4 CK - 4A	42,6	35,5	47,32	39,4	47,32	39,4	47,32	39,4	47,32	39,4							
175 110 - 8	CK - 40 CK - 400			43,1												11.	<u>.</u>	
	CK-S	_				34,6	28,9	34,6	28.9	34,62	28.9							
NB 150-1														_				
	CK-Sub					28,7	23,9	28,7	23, 9	28,73	23,9							
05 150-2	CK-4 CK-4A			-		47,32	39,4	47,32	39,4	47,32	39,4							
115 150-2	CK-4 CK-4A CK-4A CK-4A	_					35,9			43,10	35,9							
115 220 - 1	CK - 5 CK - 4 A	_										47,32	39,4					
IID LEU I	CK-5 n CK-5 np											43,1	35,9					
ND 33U 1	CK-5													47,32	39,4			
กิ 334 ใ ด้อง มีหมูกาว เด็มงอัง	CK-5 np														35,9			
	1 5 11 4			L		L	L—	ل حسسها	L	المرد عمودوه					ام الم			

M (M ^h)	$R(R^{H})$ T_{1} T_{2} $N_{1}p(N^{H})$
К табл. 1	K masn. 2

Нагрузки для расчета закреплений анкерна-угловай

14.2 11.8 8.4 36.5 42,7 12,77 10,6

30° 18,5 15,4 10,9 39,1 46,1 15,8 13,1 8,4 28,9

19,2 16,0 11,9 40,5 47,6 16,5 13,7 8,9 34,2

8.6 7.2 8,6 30,5 35,8 11.8 9,7 11.1 26,7 32,

31.6 26,3 18.7 55.3 65,6 18.4 15,3 10,4 32,6 39,

Нармальный режим Пварийный режим

7,2 8,1 32,1 37,4 10,1 8,4 10,1 27,7 33,

ONODEL BA 110 KB

Yeon

*ເ*ດຊົນຕົວ:

Mpobod

AC-95

AC-150

u Baiwe

Tabnuya 2

Примечание:

1. На настаящем листе приведены ногрузки на закрепления: вырывающие нагрузки В,ВМ,Т — Втс сжимающие нагрузки Nnp. Nn - втс

Чертежу присвоена питера "а" в связи с коррек-กับอุดชีหือน้ำ หอะอุบุรอห.

Гл. инженер проекта Помомов /

JCT

K magn 3

Oca II mpaåepce

DROUBL //

Примечание* Расчет оснаваний закредлений стаек при действии нагрузок аварийных режитой производится только для плор ограничивающих пролет пересекающий инженерные сооружения с нармируемым расстоянием до них

Шифр Нормальный режим Авар. режин

Nop NH MI MH*

18 8 20,7 23,0 22,1

Ногрузки для расчета эскреплений пронежутачнай апары ПБ 330-1 с анутренними саязями

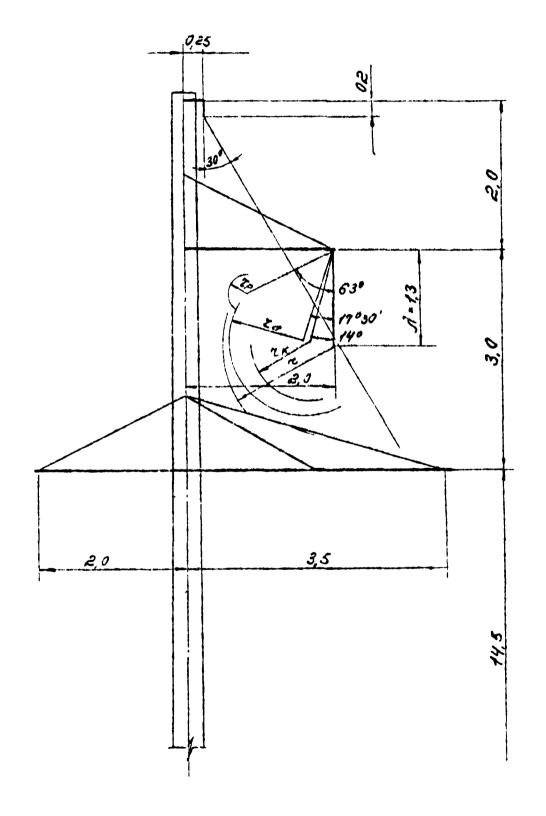
13,6

Шифр

апары

ПБ 330-1

с внутрен


CITIOUKU

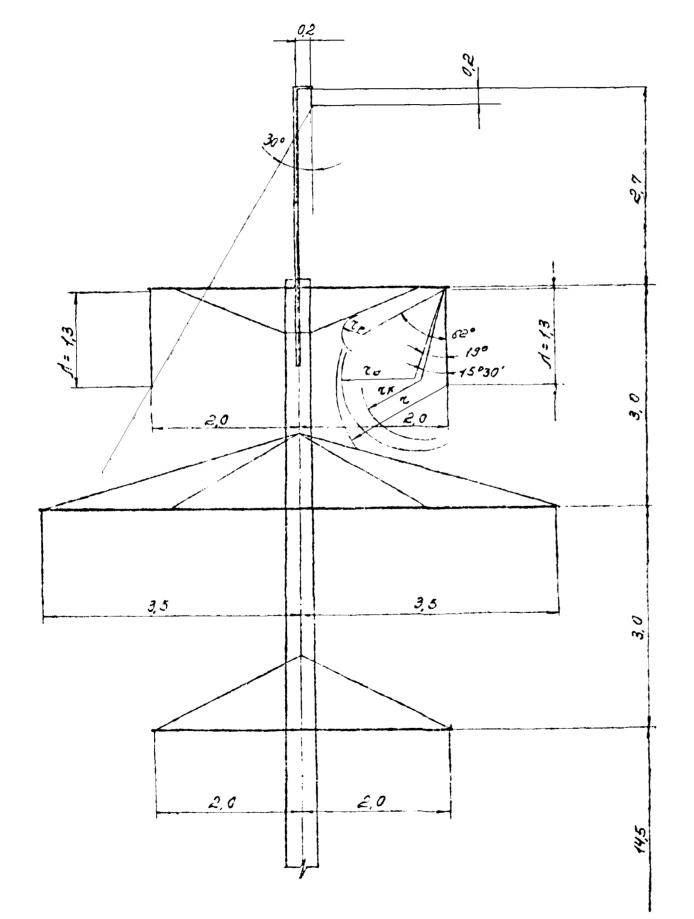
CK-5

Маблицы нагрузак для рисчета Закреплений опар в грунте

N 3U82TM-T 1-3 //UCM Numepa a

ΠΕΙΙΟ-Ι, ΠΕΙΙΟ-3, ΠΕΙΙΟ-6

Таблица усилий, действующих на гирлянду изоляторов и углы отклонения гирлянд


Ма рка про вод а		P		g" = 50 Kr/m² Beauquam Harpysok ppu Bempe 8c3 20000cda			
			HUC	9. · 6.25 KI/M	9x=5 KT/M2	9p = 50KI/N	
	1	Давление ветра на пролет провода Свет: Ст: 295 м	Pn	24	19	147	
	æ	Вес гирпанды изоляторов	Q		36		
AC-90	3	Bec nponema npoboda Coc: 0,75 Cr = 206 m	Gn	57			
	7	Yron ornanomenua tal = Pn tal = Gn + 0,50	æ	17°30'	140	63°	

Нормированные воздушные изоляционные расстояния для ВЛ НОКВ

 $T_p = 25 \, \text{cm}$ по наибольшему рабочему напряжению при $q_p = 50 \, \text{кг/m}^2$ $T_K = 80 \, \text{cm}$ - по коммутационным перенапряжениям при $q_K = 5 \, \text{кг/m}^2$ $T_d = 100 \, \text{cm}$ - по аптмосферным перенапряжениям при $q_d = 6,25 \, \text{кг/m}^2$ $T_c = 150 \, \text{cm}$ - ремонго под напряжением

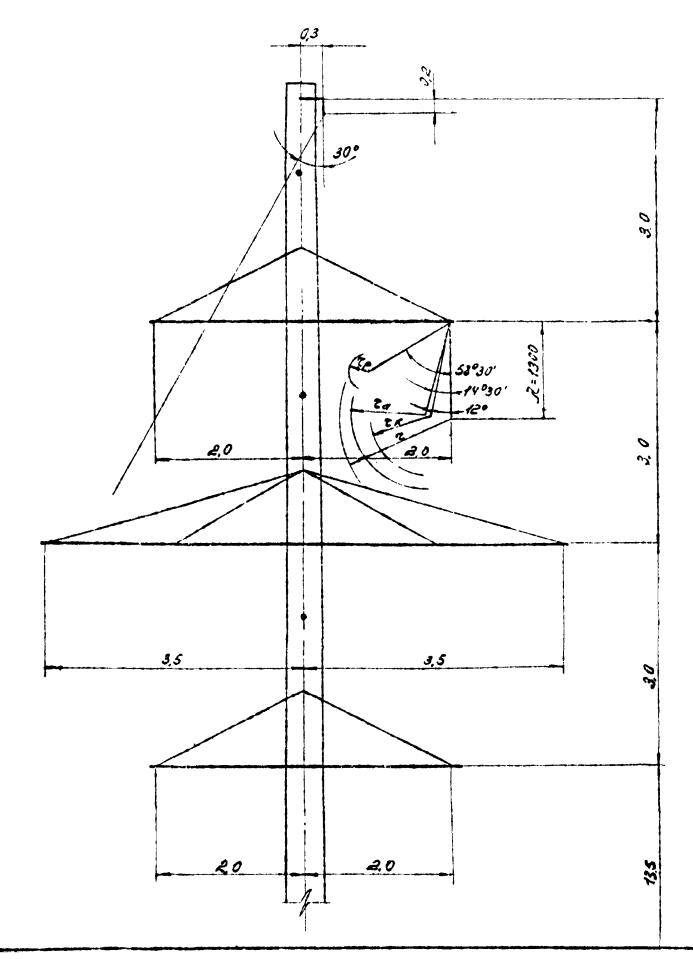
2002 201.51 1.

Π5110-2 Π5110-5

Таблица усилий, действующих на гирлянду изоляторов и углы отклонения гирлянд.

Маркл провода		Наимонование	0803- Hd 4e- HUC	Bempe			
	1	Довление ветра на пролет провода Светр=С1=250м	Pn	21	90:6,25 Mz 9x:5 KI/M² 9p=		
	۾	вес гирлянды изоляторов	Q		36		
AC-10	3	Bec nponema npoboda CBec= 0.75 Cr = 188 m	Gn	52			
	4	YEON OMKNOHEHUR PR tgL: Go.05G	d	190	15°30	62°	

Нормированные воздушные изоляционные расстояния для ВЛ НОКВ


 $T_p = 25 c_M - 70$ наибольшему рабочему нопряжению при $g_p = 50 \, kr/m^2$ $T_k = 80 c_M - 70$ номмутационным перенапряжениям при $g_k = 5 \, kr/m^2$ $T_a = 100 c_M - 70$ а стмосферным перенапряжениям при $g_a = 6.25 \, kr/m^2$ $T_a = 150 c_M$ ремонт под напряжением

29

ЭСП Табариты приближения токоведущих частей к телу опор ПБ110-2, ПБ110-6

N3082TM-71-4 Nucm Nucepa 2 5

Π5110-4, Π5110-8

Таблица усилий, действующих на гирлянду изоляторов и углы отклонения гирлянд.

Mapka NN npolodo n/n		Наименование	0803. HQYC-	9 % = 50 Kr/m² BENUVUHLI HOZDYSON PDU BEMDE			
			HUC	1	9x=5x1/m2	_	
	1	Довление встра на пролет провода Светр=Сr=275 м	P17	31	25	195	
RC-120	و	Вес гирлянды изоляторов	a		36		
	3	8ec nporema npoboda Cbec:0,75Cr 206M	Gn		101		
	4	tgd = Fr Gosa	d	14°30'	120	58° 3 0'	

Нормированные воздушные изоляционные расстояния для ВЛ 110 кв

 $T_p \cdot 25cm \cdot по.$ наибольшему рабочему напряжению при $q_p = 50 \kappa r/m^2$ $T_m \cdot 80cm \cdot по коммутационным перенапряжениям при <math>q_m = 5 \kappa r/m^2$ $T_a \cdot 100cm \cdot по атмосферным перенапряжениям при <math>q_m = 6,25 \kappa r/m^2$ $T_a \cdot 150cm \cdot pemonto под напряжением$

30

ЭСП Габариты приближений токовейницих настей к телу опор ПБ 110-4, ПБ 119-8

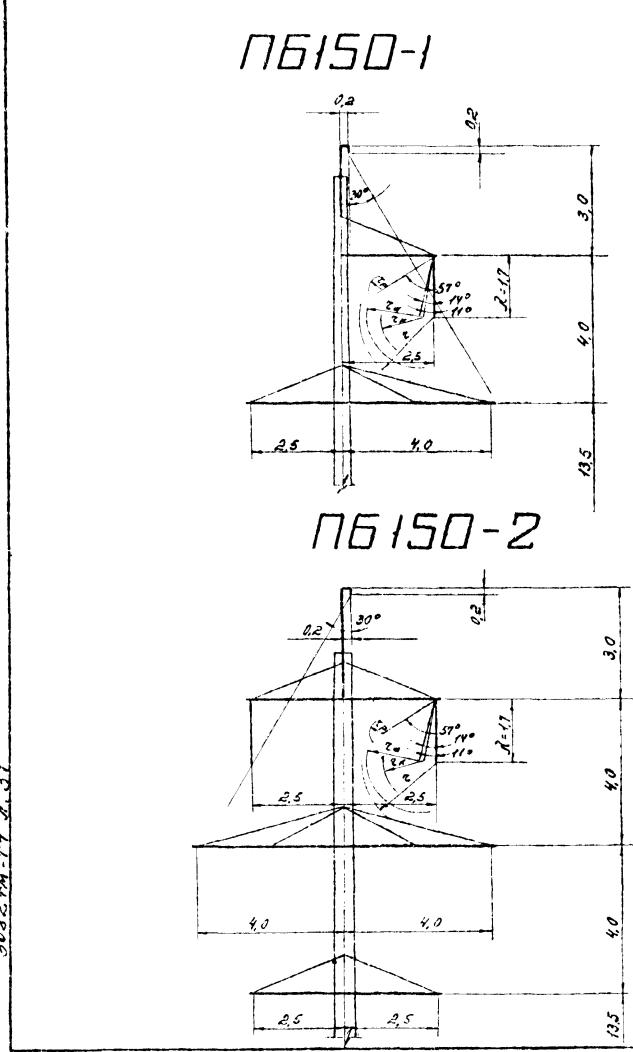
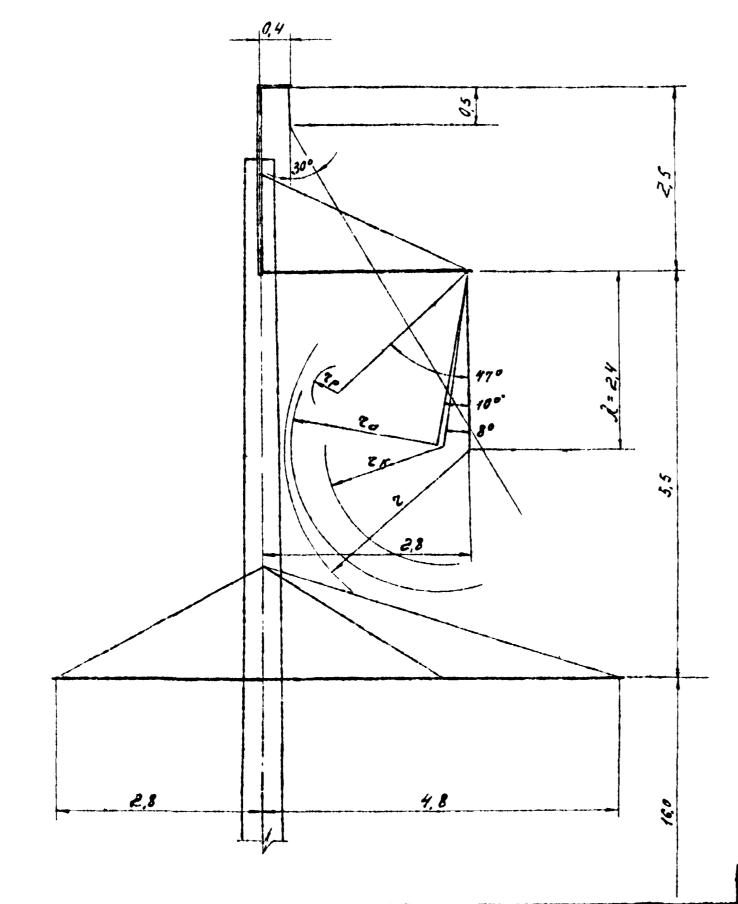


Таблица усилий, действующих на гирлянду изоляторов и углы отклонения гирлянд.

Марка провода			Обозна. Чение	BENUTUHOI HOSBUSOK PRUBEMO			
	""	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		90: 6,25 /4	90:5KI/H2	3p=50xr/m	
	1	Дэвление ветра на пролет провода Светр = Cr = 250 м	Pn	29	23	178	
	ور	Вес гирлянды изоляторов	Q		43	1	
AC-120	3	Bec nponema npoboda	Gn		93		
	¥	YOUN OMENOHEHUR PO d= Gn+050	L	140	110	570	


Нормированные воздушные изоляционные расстояния для ВЛ 150кв

 $T_{p}=35cm$. По наибольшему рабочему напряжению при $q_{p}=50^{K}/M^{2}$ $T_{K}=110cm$. По коммутационным перенапряжениям при $q_{K}=5Kr/M^{2}$ $T_{a}=140cm$. По атмосферным перенапряжениям при $q_{a}=6,25Kr/M^{2}$ $T_{a}=200cm$. ремонт под напряжением

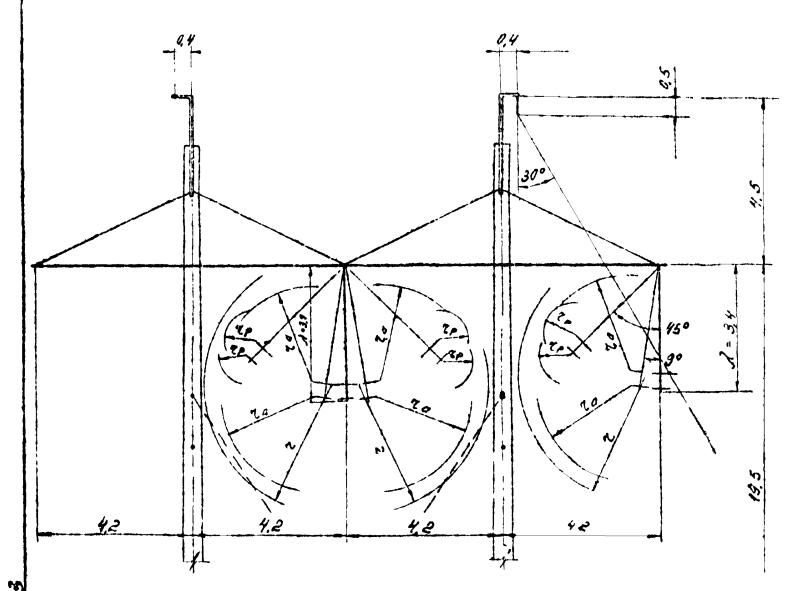
31

7/17	Габариты ,	πρυδλυχανού	токоведущих 150-1, 116 150-2
<u> </u>	HOCHTOU K	meny onop 1161	150-1, 116 750-2

ПБ220-1

Таблица усилий, действующих на гирлянду изоляторов и углы отклонения гирлянд

Марка	i		0803H0	9 " = 50 Mr/M2 Величичы нагрузок при ветра			
npobodo	nIn	Наименова ние	YEHUC	90.6.25×1/m2	i e	1	
	,	Давление ветра на пролет провода Светр: Ст = 290 м	Pn	47	38	292	
ACO-300	وے	Bee EUPARNOW USOARMOPOB	Q		69		
	3	Bec nponeina npoboda Chec: 0,75 Cr = 218 M	Gn		239		
	4	YEON OMENOHEHUR PA Eq L3 Gn+0,50	L	100	80	470	


Нормированные воздушные изоляционные расстояния для ВЛ 240 кв

 T_p : \$5cm. По наибольшему рабочему напряжению при q_p = 50 кг/м² T_k : 160cm. По коммутационным перенапряжениям при q_k : 5 кг/м² T_a : 200cm. По атмосферным перенапряжениям при q_a : 6,25 кг/м² T_a : 250cm. ремонт под напряжением

32

3CΠ Γαδαρυποι πρυδλυжения ποκοβεθύμων N3UE. TM·TI-4 Aucm

ПБЗЗО-1

Таблица усилий, действующих на гирлянду изоляторов и углы отклонения гирлянд

Марка провода	.	NN 1/n HaumenoBanue	0803Ha 4eHue	g" = 50 Kr/m2 BENULLHU HAZDYBOK DYU BETTIPE SEB ZONDNEĐO			
	ĺ					9p=50x1/m2	
0	1	Давление ветра на пролет провода Светр: Ст = 335 м	Pn	108	86	675	
0-30	2	Bec zupnahdbi usonamopob	Q		252		
EX ACO	з	вес пролета провода Свес:2 0,75 Ст = 502 м	Gn		550		
	4	YEON OMKNOHEHUR to L. Ph On + 0.58	d	3°	70	450	

Нормированные воздушные изоплионные расстояния для ВЛ 330кв

 $T_p = 80cm - по$ наибольшему рабочему напряжению при $g_p = 50\kappa r/m^2$ $T_k = 215cm \cdot по$ конмутационным перенапряжениям при $g_m = 5\kappa r/m^2$ $T_a = 260cm \cdot по$ атмосферным перенапряжениям при $g_a = 6,25\kappa r/m^2$ $T = 350cm \cdot ремонт под напряжением$

33