ОАО "ЭЛЕКТРОКАБЕЛЬ" КОЛЬЧУГИНСКИЙ ЗАВОД"

ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ КАБЕЛЕЙ С ИЗОЛЯЦИЕЙ ИЗ СШИТОГО ПОЛИЭТИЛЕНА НА НАПРЯЖЕНИЕ 6, 10, 20, 35 кВ

ВВЕДЕНИЕ

Настоящая инструкция распространяется на кабельные линии, выполненные кабелями с изоляцией из сшитого полиэтилена на переменное напряжение 6, 10, 20, 35 кВ частотой 50 Гц типа:

-на напряжение 10-35 кВ:

- ПвП, АПвП, ПвПу, АПвПу, ПвПг, АПвПг, ПвПуг, АПвПуг, ПвП2г, АПвП2г, ПвПу2г, АПвПу2г, ПвВ, АПвВ, ПвВнг-LS и АПвВнг-LS в одножильном исполнении с сечением медных и алюминиевых жил 50-800 мм 2 по ТУ16.К71-335-2004.
- ПвП, АПвП, ПвПу, АПвПу, ПвПг, АПвПг, ПвПуг, АПвПуг, ПвВ, АПвВ, ПвВнг-LS и АПвВнг-LS, АПвБП, ПвБП, АПвБПг, ПвБПг, АПвБВ, ПвБВ, АПвБВнг-LS, ПвБВнг-LS в трехжильном исполнении с сечением медных и алюминиевых жил 50-240 мм² по ТУ16.К71-335-2004.

-на напряжение 6 кВ:

- ПвП, АПвП, ПвПу, АПвПу, ПвПг, АПвПг, ПвПуг, АПвПуг, ПвП2г, АПвП2г, ПвПу2г, АПвПу2г, ПвВ, АПвВ, ПвВнг-LS и АПвВнг-LS в одножильном исполнении с сечением медных и алюминиевых жил 35-800 мм 2 по ТУ16.К71-359-2005.
- ПвП, АПвП, ПвПу, АПвПу, ПвПг, АПвПг, ПвПуг, АПвПуг, ПвВ, АПвВ, ПвВнг-LS и АПвВнг-LS, АПвБП, ПвБП, АПвБПг, ПвБПг, АПвБВ, ПвБВ, АПвБВнг-LS, ПвБВнг-LS в трехжильном исполнении с сечением медных и алюминиевых жил 35-240 мм² по ТУ16.К71-359-2005.

Кабели по конструктивному исполнению, техническим характеристикам и эксплуатационным свойствам соответствуют международному стандарту МЭК 60502-2, гармонизированным документам HD 620 S1 и HD 605 S2.

- на напряжение 6 и 10 кВ не распространяющие горение в холодостойком исполнении:
- ПвВнг(A)-XЛ, АПвВнг(A)-XЛ в одножильном исполнении с сечением медных и алюминиевых жил 35-800 мм 2 по ТУ16.К01-61-2009
- -ПвВнг(A)-ХЛ, АПвВнг(A)-ХЛ, ПвБВнг(A)-ХЛ, АПвБВнг(A)-ХЛ в трехжильном исполнении с сечением медных и алюминиевых жил $35-300~{\rm mm}^2~{\rm no}$ ТУ 16.K01-61-2009.

Кабели по конструктивному исполнению, техническим характеристикам и эксплуатационным свойствам соответствуют международному стандарту МЭК 60502-2

Примеры условного обозначения одножильных и трехжильных кабелей:

кабеля марки АПвП с одной жилой сечением $150~{\rm mm}^2$, с медным экраном сечением $25~{\rm mm}^2$, на напряжение $35~{\rm kB}$:

"Кабель АПвП 1x150/25-35";

то же, с тремя круглыми жилами сечение 150 мм^2 , с медным экраном сечением 25 мм^2 , на напряжение 35 кB:

"Кабель АПвП 3x150/25-35";

кабеля марки ПвВ, скрученного из трех одножильных кабелей с сечением жилы 120 мм^2 , с медным экраном сечением 16 мм^2 , на напряжение 35 кB:

"Кабель ПвВ 3x (1x120/16-35)";

кабеля марки ПвВнг(A)-ХЛ с одной медной токопроводящей жилой сечением 50 мм², с медным экраном сечением 16 мм², на напряжение 6 кВ:

" Кабель ПвВнг(A)-XЛ 1x50/16-6";

кабеля марки АПвБВнг(A)-ХЛ с тремя алюминиевыми токопроводящими жилами сечением $150~{\rm mm}^2$, с медным экраном сечением $25~{\rm mm}^2$, бронированного, на напряжение $10~{\rm kB}$:

"Кабель АПвБВнг(A)-XЛ 3x150/25-10"

Инструкция составлена в соответствии с "Правилами технической эксплуатации электрических станций и сетей", учитывает положения "Инструкции по эксплуатации силовых кабельных линий. Часть 1.Кабельные линии напряжением до 35 кВ" и является обязательной для персонала электрических станций и электрических сетей.

1. Указание по безопасности проведения работ

При эксплуатации кабельных линий следует руководствоваться правилами техники безопасности при эксплуатации электроустановок и настоящей инструкцией.

Кабели должны применятся в соответствии с ГОСТ Р 51330.13-99, действующими "Правилами устройства электроустановок, гл.7.3 и 7.4", "Техническим циркуляром №14/2006 Ассоциации "Росэлектромонтаж"", правилами ПБ 09-540-03, ПБ08-624-03 и ПБ 03-538-03

2. Общие положения по эксплуатации кабельных линий

После приемки кабельной линии в эксплуатацию эксплуатирующая организация должна оформить всю техническую документацию по данной кабельной линии согласно Приложению 1. На каждую кабельную линию должен

быть заведен паспорт, содержащий все необходимые технические данные по линии и систематически пополняемый сведениями по ее испытаниям, ремонту и эксплуатации.

- 2.1. Климатические воздействия на кабельные линии и условия прокладки.
- 2.1.1. Кабели выпускаемые по ТУ 16.К71-335-2004, ТУ16.К71-359-2005 при эксплуатации являются стойкими к воздействию температуры окружающей среды до плюс 50°С. Кабели марок ПвВнг-LS, АПвВнг-LS, ПвБВнг-LS, АПвБВнг-LS, АПвВ, ПвВ, АПвБВ, ПвБВ должны быть стойкими к воздействию пониженной температуры окружающей среды до минус 50°С, марок ПвП, АПвП, ПвПу, АПвПу, ПвПг, АПвПг, ПвПуг, АПвПуг, ПвП2г, АПвП2г, ПвПу2г, АПвПу2г, АПвБП, ПвБПг, ПвБПг до минус 60°С, т.е. соответствуют виду климатического исполнения У, УХЛ, категории размещения 1 и 2 по ГОСТ 15150-69.

Кабели марок ПвП, АПвП, ПвПу, АПвПу, АПвБП, ПвБП предназначены для эксплуатации в стационарном состоянии при прокладке в земле независимо от степени коррозийной активности грунтов.

Допускается прокладка кабелей ПвП, АПвП, ПвПу, АПвПу, АПвБП, ПвБП на воздухе, в том числе в кабельных сооружениях, при условии обеспечения дополнительных мер противопожарной защиты, например, нанесения огнезащитных покрытий.

Кабели указанных марок с индексом "г" и "2г" предназначены для прокладки в земле, а также, в воде (в несудоходных водоемах) – при соблюдении мер, исключающих механические повреждения кабеля.

Кабели марок ПвПу, АПвПу, ПвПуг, АПвПуг, ПвПу2г, АПвПу2г, АПвПу2г, АПвБП, ПвБП, АПвБПг, ПвБПг предназначены для прокладки на сложных участках кабельных трасс, содержащих более 4 поворотов под углом свыше 30 градусов или прямолинейные участки с более чем 4 переходами в трубах длиной свыше 20 м или с более чем 2 трубными переходами длиной свыше 40 м.

Кабели марок ПвВ, АПвВ, ПвБВ, АПвБВ, предназначены для одиночной прокладки в кабельных сооружениях и производственных помещениях, а кабели марок ПвВнг-LS, АПвВнг-LS, ПвБВнг-LS и АПвБВнг-LS — там же, но для групповой прокладки.

Для кабелей марок ПвВнг-LS, АПвВнг-LS, ПвБВнг-LS и АПвБВнг-LS в зависимости от предела распространения горения по классификации НПБ-248 к обозначению марки добавляются индексы:

- А предел распространения горения ПРГП 1, например ПвВнг(A)-LS;
- В предел распространения горения ПРГП 2, например АПвБВнг(В)-LS

Кабели марок ПвВ, АПвВ, ПвВнг-LS, АПвВнг-LS, ПвБВ, АПвБВ, ПвБВнг-LS, АПвБВнг-LS могут быть проложены в сухих грунтах (песок, песчаноглинистая и нормальная почва с влажностью менее 14 %).

Кабель марки ПвВнг-LS, ПвБВнг-LS может быть использован для прокладки во взрывоопасных зонах классов В-I, В-Ia; кабель марки АПвВнг-LS, АПвБВнг-LS – во взрывоопасных зонах классов В-Iб, В-Iг, В-II, В-IIа.

2.1.2. Кабели выпускаемые по ТУ 16.К01-61-2009 марок ПвВнг(А)-ХЛ, АПвВнг(А)-ХЛ, ПвБВнг(А)-ХЛ, АПвБВнг(А)-ХЛ предназначены для эксплуатации в стационарном состоянии и являются стойкими к воздействию температуры окружающей среды от минус 60 °C до плюс 40°C, т.е. соответствуют виду климатического исполнения ХЛ, категории размещения 1 и 2 по ГОСТ 15150-69.

Кабели марок ПвВнг(A)-ХЛ, АПвВнг(A)-ХЛ предназначены для групповой прокладки кабельных линий в кабельных сооружениях и производственных помещениях, прокладки на эстакадах.

Кабели марок ПвБВнг(A)-ХЛ, АПвБВнг(A)-ХЛ предназначены для групповой прокладки кабельных линий в кабельных сооружениях и производственных помещениях, прокладки на эстакадах, при наличии опасности механических повреждений при эксплуатации.

Кабели марок ПвВнг(A)-ХЛ и ПвБВнг(A)-ХЛ могут применятся для прокладки во взрывоопасных зонах классов B-I, B-Ia, кабели марок АПвВнг(A)-ХЛ и АПвБВнг(A)-ХЛ— во взрывоопасных зонах классов B-Iб, B-Iг, B-II, B-IIa

2.1.3. Кабели предназначены для прокладки на трассах без ограничения разности уровней.

Кабели могут быть проложены без предварительного подогрева при температуре не ниже минус 20°С – марок ПвП, АПвП, ПвПу, АПвПу, ПвПг, АПвПг, ПвПуг, АПвПуг, ПвП2г, АПвП2г, ПвПу2г, АПвПу2г, АПвПу2г, АПвБП, ПвБП, АПвБПг, не ниже минус 15°С – марок ПвВ, АПвВ, ПвВнг-LS и АПвВнг-LS, ПвБВ, АПвБВ, ПвБВнг-LS, АПвБВнг-LS, ПвВнг(А)-ХЛ, АПвВнг(А)-ХЛ, АПвБВнг(А)-ХЛ, АПвБВнг(А)-ХЛ

2.1.4. Тяжение кабелей во время прокладки должно осуществляться при помощи кабельного чулка или за токопроводящую жилу при помощи клинового захвата.

Усилия, возникающие во время тяжения кабеля с алюминиевой жилой, не должны превышать 30 H/mm^2 сечения жилы, кабеля с медной жилой – 50 H/mm^2 .

2.1.5. Минимальный радиус изгиба кабеля при прокладке и монтаже одножильных кабелей должен быть не менее 15 DH, трехжильных - не менее $10 \, \mathrm{D_{H}}$. Количество изгибов кабеля под углом 90° на трассах прокладки должно быть не более 8 на строительную длину кабеля.

При монтаже с использованием специального шаблона допускается минимальный радиус изгиба кабеля 7,5 Dн.

2.2. Срок службы кабелей

2.2.1 Срок службы кабелей должен быть не менее 30 лет при соблюдении потребителем условий транспортирования, хранения, прокладки (монтажа) и эксплуатации.

Фактический срок службы кабелей не ограничивается указанным сроком службы, а определяется техническим состоянием кабеля.

2.3. Комплектность

- 2.3.1. Упаковка кабелей должна соответствовать требованиям ГОСТ 18690-82.
- 2.3.2. Кабели должны поставляться на деревянных или металлических барабанах
- 2.3.3. Барабан с кабелем должен иметь полную или частичную обшивку.
- 2.3.4. Ярлык и сопроводительная документация должны быть помещены в водонепроницаемую упаковку и прикреплены к щеке барабана.

2.4. Токи кабельных линий.

2.4.1. Длительно допустимые токи кабелей рассчитаны при коэффициенте нагрузки K=1 для температуры окружающей среды 15°C - при прокладке в земле и 25°C - при прокладке на воздухе.

При прокладке в земле токи рассчитаны при глубине прокладки 0,7м и удельном термическом сопротивлении почвы 1,2 K⋅м/Bт.

Токи кабелей рассчитаны для случая заземления медных экранов с двух концов кабеля.

Для одножильных кабелей токи рассчитаны при прокладке треугольником – вплотную, при прокладке в плоскости - при расстоянии между кабелями в свету, равном диаметру кабеля.

2.4.2 Токи одножильных кабелей при прокладке в земле должны соответствовать указанным в таблице 1 для кабелей на 6,10 кВ, в таблице 2 - для кабелей на напряжение 20 и 35 кВ, при прокладке на воздухе соответственно в таблицах 3 и 4.

Таблица 1

Номинальное	Ток при прокладке в земле, А (кабели 6, 10 кВ)					
сечение	кабель с медн	ой жилой при	кабель с алюминиевой жилой			
жилы, мм²	располо	эжении	при распо	ложении		
	в плоскости	треуг-ком	в плоскости	треуг-ком		
35	221	193	172	147		
50	250	225	195	170		
70	310	275	240	210		
95	336	326	263	253		
120	380	370	298	288		
150	416	413	329	322		
185	466	466	371	364		
240	531	537	426	422		
300	590	604	477	476		
400	633	677	525	541		
500	697	759	587	614		
630	762	848	653	695		
800	825	933	719	780		

Таблица 2

Номинальное	Ток при прокладке в земле, А (кабели 20, 35 кВ)					
сечение	кабель с медн	ой жилой при	кабель с алюминиевой жилой			
жилы, мм ²	располо	ожении	при распо	ложении		
	в плоскости	треуг-ком	в плоскости	треуг-ком		
50	230	225	185	175		
70	290	270	225	215		
95	336	326	263	253		
120	380	371	298	288		
150	417	413	330	322		
185	466	466	371	365		
240	532	538	426	422		
300	582	605	477	476		
400	635	678	426	541		
500	700	762	588	615		
630	766	851	655	699		
800	830	942	722	782		

Таблица 3

Номинальное	Ток при прокладке на воздухе, А (кабели 6, 10 кВ)					
сечение	кабель с медн	ой жилой при	Кабель с алюминиевой жилой			
жилы, мм ²	располо	ожении	при распо	оложении		
	в плоскости	треуг-ком	в плоскости	треуг-ком		
35	250	203	188	155		
50	290	240	225	185		
70	360	300	280	230		
95	448	387	349	300		
120	515	445	403	346		
150	574	503	452	392		
185	654	577	518	450		
240	762	677	607	531		
300	865	776	693	609		
400	959	891	787	710		
500	1081	1025	900	822		
630	1213	1166	1026	954		
800	1349	1319	1161	1094		

Таблица 4

Номинальное	Ток при прокладке на воздухе, А (кабели 20, 35 кВ)					
сечение	кабель с медн	ой жилой при	кабель с алюминиевой жилой			
жилы, мм ²	располо	ожении	при распо	ложении		
	в плоскости	треуг-ком	в плоскости	треуг-ком		
50	290	250	225	190		
70	365	310	280	240		
95	446	389	348	301		
120	513	448	402	348		
150	573	507	451	394		
185	652	580	516	452		
240	760	680	605	533		
300	863	779	690	611		
400	957	895	783	712		
500	1081	1027	897	824		
630	1213	1172	1023	953		
800	1351	1325	1159	1096		

2.4.3. Длительно допустимые токи трехжильных бронированных и небронированных кабелей должны соответствовать указанным в таблицах 5 и 6.

Таблица 5

Номинальное	Ток при прокладке в земле, А						
сечение	кабел	кабель с медной жилой			кабель с алюминиевой жилой		
жилы, мм ²	6 кВ	10 кВ	20 и 35 кВ	6 кВ	10 кВ	20 и 35 кВ	
35	164	192	-	126	145	-	
50	192	207	207	148	156	161	
70	233	253	248	181	193	199	
95	279	300	300	216	233	233	
120	316	340	341	246	265	265	
150	352	384	384	275	300	300	
185	396	433	433	311	338	339	
240	457	500	500	358	392	392	
300	557	573	-	442	460	-	

Таблица 6

Номинальное	Ток при прокладке на воздухе, А						
сечение	Кабель с медной жилой			кабель с	кабель с алюминиевой жилой		
жилы, мм ²	6 кВ	10 кВ	20 и 35 кВ	6 кВ	10 кВ	20 и 35 кВ	
35	179	196	-	138	151	-	
50	213	206	215	165	159	163	
70	263	255	264	204	196	204	
95	319	329	331	248	255	256	
120	366	374	376	285	291	292	
150	413	423	426	321	329	331	
185	417	479	481	368	374	375	
240	550	562	564	432	441	442	
300	630	635	-	495	501	-	

2.4.4. При определении допустимых токов для кабелей, эксплуатирующихся при температуре окружающей среды, отличающейся от приведенной в п.2.4.1.,следует применять поправочные коэффициенты, указанные в таблице 7.

Таблица 7

Условия		Поправочные коэффициенты при температуре окружающей среды, ⁰ С										
прокладки												
	-5	0	5	10	15	20	25	30	35	40	45	50
Земля	1,13	1,1	1,06	1,03	1,0	0,97	0,93	0,89	0,86	0,82	0,77	0,73
Воздух	1,21	1,18	1,14	1,11	1,07	1,04	1,0	0,96	0,92	0,88	0,83	0,78

- 2.4.5. Допустимые токи кабеля в режиме перегрузки при прокладке в земле и на воздухе могут быть рассчитаны путем умножения значений, указанных в таблицах 1, 2, 5 на коэффициент 1,17 и указанных в таблицах 3, 4, 6 на коэффициент 1,20.
- 2.4.6. Допустимые токи кабелей, проложенных в земле в трубах длиной более 10 м, должны быть уменьшены путем умножения значений токов, указанных в таблицах 1 и 2, на коэффициент 0,94, если одножильные кабели проложены в отдельных трубах, и на коэффициент 0,9, если три одножильных кабеля проложены в одной трубе.

Допустимые токи нескольких кабелей проложенных в земле, включая проложенные в трубах, должны быть уменьшены путем умножения значений токов, указанных в таблицах 1 и 2 на коэффициенты приведенные в таблице 8.

Таблица 8

Расстояние	Поправочные коэффициенты при количестве кабельных линий, шт							
между								
кабелями	1	2	3	4	5	6		
в свету, мм								
100	1	0,90	0,85	0,80	0,78	0,75		
200	1	0,92	0,87	0,84	0,82	0,81		
300	1	0,93	0,90	0,87	0,86	0,85		

2.4.7. Поправочные коэффициенты к длительно допустимым токам для кабелей в зависимости от удельного теплового сопротивления грунта приведены в таблице 9.

Удельное тепловое сопротивление	Поправочный
грунта, ° С см/Вт	Коэффициент
250	0.80
200	0.85
150	0,93
120	1,00
100	1,05
80	1,13

- 2.4.8. Поправочные коэффициенты, уточняющие изменение токов для кабелей в зависимости от количества линий и их расположения в кабельных сооружениях и на стенах, приведены в Приложении 2.
- 2.4.9. Допустимый нагрев жил и металлических экранов кабелей в эксплуатации не должен превышать следующих значений:
 - допустимый нагрев жилы в нормальном режиме нагрузки 90°С;
 - допустимый нагрев жилы в режиме перегрузки не более 130°C;
 - предельная допустимая температура жил кабеля при коротком замыкании 250°C;
- предельная допустимая температура нагрева жил кабеля при коротком замыкании по условию невозгораемости 400°С;
 - предельно допустимая температура медного экрана при коротком замыкании 350°C;

Продолжительность протекания тока короткого замыкания в указанных режимах КЗ до 4с.

2.4.10. Допустимые токи односекундного короткого замыкания кабелей должны быть не более указанных в таблице 10.

Таблица 10

Номинальное	Допустимый ток 1- секундного короткого				
сечение	замыкания, кА, кабеля				
жилы, мм ²	с медной жилой	с алюминиевой жилой			
35	5,0	3,3			
50	7,15	4,7			
70	10,0	6,6			
95	13,6	8,9			
120	17,2	11,3			
150	21,5	14,2			
185	26,5	17,5			
240	34,3	22,7			
300	42,9	28,2			
400	57,2	37,6			
500	71,5	47,0			
630	90,1	59,2			
800	114,4	75,2			

Токи короткого замыкания рассчитаны при температуре жилы до начала короткого замыкания 90°С и предельной температуре жилы при коротком замыкании 250°С.

2.4.11. Допустимые токи односекундного короткого замыкания в медных экранах приведены в таблице 11.

Таблица 11

Сечение медного экрана, мм ²	Допустимый ток односекундного короткого замыкания, кА ,не более
16	3,3
25	5,1
35	7,1
50	10,2
70	14,2
95	19,3

Для других значений сечения медного экрана допустимый ток односекундного короткого замыкания рассчитывают по формуле:

$$I_{\kappa.3.} = k \times S_3$$
,

где $I_{\kappa,3}$ — допустимый ток односекундного короткого замыкания в медном экране, к**A**;

k – коэффициент, равный 0,203 кА/мм²;

 S_{9} — номинальное сечение медного экрана, мм².

Для продолжительности короткого замыкания, отличающейся от 1 с, значения тока короткого замыкания, указанные в таблице 10 и 11, необходимо умножить на поправочный коэффициент К, рассчитанный по формуле:

$$K = 1/\sqrt{t}$$
,

где t — продолжительность короткого замыкания, с.

- 2.4.12. В условиях эксплуатации длительно допустимые токи для каждой кабельной линии должны устанавливаться с учетом следующих конкретных условий, в которых они работают;
 - вид прокладки;
 - температура окружающей среды (земли, воздуха);
 - количество рядом проложенных кабелей;
 - тепловое сопротивление грунта для участка трассы с наихудшими условиями охлаждения;
 - прокладка кабелей в земле в трубах на длине более 10 м.

Нагрузки определяются по участку трассы кабельной линии с наихудшими условиями охлаждения, если длина участка более 10 м.

- 2.4.13. Продолжительность перегрузки не должна превышать 8ч в сутки и быть не более 1000 ч за срок службы.
- 2.4.14. При определении пропускной способности кабелей при прокладке их в одной плоскости следует учитывать неравномерность распределения токов по отдельным кабелям.
- 2.4.15. При неравномерности распределения токов более 10%, когда отдельные кабели лимитируют пропускную способность группы кабелей, должны быть приняты меры по выравниванию токов по фазам одним из следующих способов:
- перекладка кабелей;
- пересоединение (перезаводка) концов кабелей.
- 2.4.16 Расчетные длительно допустимые значения токов и допустимые значения перегрузок должны быть записаны в паспорте кабельной линии.
- 2.4.17. Измерение температуры окружающего воздуха в кабельных сооружениях и в производственных помещениях, температуры грунта в местах

пересечения кабелей с теплопроводами производится в сроки, устанавливаемые местными инструкциями.

- 2.4.18. Если в результате измерений и проверок будет обнаружено превышение допустимых токов или температур, то рекомендуется:
- улучшить вентиляцию в туннелях и каналах;
- заменить траншейные прокладки с большим количеством кабелей прокладками в туннелях и каналах хотя бы простейших типов (с технико- экономическим обоснованием);
- применить вставки кабелей большего сечения, применить дополнительную теплоизоляцию теплопроводов в местах пресечений их с кабелями;
- увеличить расстояния между кабелями в траншеях для уменьшения взаимного теплового влияния;
- засыпать траншеи более теплопроводящим грунтом.
- 2.4.19. Необходимая информация о расчетных значениях сопротивления жил, индуктивности кабеля и емкости приведена в Приложении 5,6,7 соответственно.
- 3. Испытания кабельных линий, определение мест повреждения и рекомендации по ремонту кабелей
 - 3.1. Испытания кабельных линий, периодичность испытаний.
- 3.1.1. После прокладки и монтажа кабелей рекомендуется проводить испытание кабельной линии переменным напряжением $3U_0$ частотой 0,1 Гц в течение 30 мин или переменным номинальным напряжением U_0 в течение 24 ч, приложенным между жилой и металлическим экраном, где U_0 номинальное напряжение кабеля между жилой и экраном в нормальном режиме эксплуатации, кВ

При испытании изоляции кабелей напряжение прикладывается поочередно к каждой жиле кабеля. При этом остальные жилы и все экраны должны быть заземлены. Допускается одновременное испытание всех трех фаз кабельной линии.

3.1.2. Оболочка кабеля, проложенного в земле, должна быть испытана постоянным напряжением 10 кВ, приложенным между металлическим экраном и заземлителем или между броней и заземлителем, в течение 1 мин.

После испытания металлический экран и броню необходимо заземлить.

Пластмассовые оболочки кабелей, проложенных на воздухе, не испытывают.

- 3.1.3. Кабельные линии 6, 10, 20, 35 кВ с изоляцией из сшитого полиэтилена, включая кабельные вставки, испытываются:
 - перед включением КЛ в эксплуатацию;
 - после ремонтов КЛ;

- периодически 1 раз в 5 лет после включения в эксплуатацию.
- Испытания защитных пластмассовых оболочек кабелей 6, 10, 20, 35 кВ с изоляцией из сшитого полиэтилена, проложенных в земле, осуществляются:
 - перед включением КЛ в эксплуатацию;
 - после ремонтов основной изоляции КЛ;
- в случае проведения раскопок в охранной зоне КЛ и связанного с этим возможного нарушения целостности оболочки;
 - периодически 1 раз в 5 лет после включения в эксплуатацию.

Величина испытательного напряжения для изоляции принимается в соответствии с п.3.1.1, для оболочки – п.3.1.2.

- 3.1.4. До начала испытаний производится осмотр всех элементов кабельной линии, кабельных каналов и туннелей в которых проложена линия. При обнаружении дефектов концевых муфт и заделок испытания должны
- производиться после их ремонта.

 3.1.5. При испытаниях напряжение должно плавно подниматься до
- максимального значения и поддерживаться неизменным в течение всего периода испытаний. Отсчет времени приложения следует производить с момента установления его максимального значения.
- 3.1.6. Кабельная линия считается выдержавшей испытание, если во время испытаний:
- а) не произошло пробоя или перекрытия по поверхности концевых муфт, а также роста тока утечки в период выдержки под напряжением;
- б) не наблюдалось резких толчков тока.
- 3.1.7. При испытаниях вместе с кабелями испытываются концевые муфты и опорные изоляторы. Кабельные вводы и вставки на воздушных линиях испытываются без отсоединения от воздушной линии. При этом вентильные разрядники и ограничители перенапряжения на опоре линии электропередачи должны быть отсоединены.
- 3.1.8. В городских кабельных сетях испытанию при одновременном отключении могут подвергаться несколько кабельных линий, отходящих от подстанции, или цепочка последовательно соединенных кабельных линий с распределительными устройствами. При этом трансформаторы напряжения, вентильные разрядники и ограничители перенапряжения должны быть отсоединены.
- 3.1.9. После выполнения работ по капитальному ремонту кабельных линий должны производиться внеочередные испытания в соответствии с указанными выше нормами испытания.

Испытание кабельных линий после раскопок производится в соответствии с рекомендациями, в п. 3.1.1. настоящей Инструкции.

3.1.10. Место пробоя кабельной линии должно быть обследовано и должна быть выяснена причина повреждения. При обследовании, которое производится в

стационарной лаборатории, производятся разборка, осмотр и обмер поврежденного образца кабеля (или кабельной муфты).

Кроме того, при осмотрах пластмассовых оболочек следует обращать внимание на задиры, порезы, надрезы, трещины, сквозные отверстия, оплавления и другие повреждения.

При вскрытиях и разборке кабельных муфт определяются основные конструктивные размеры и соответствие их требованиям действующей технической документации на муфты.

Результаты вскрытий и разборок и заключение о причине повреждения оформляются протоколом.

- 3.1.11. При наличии в кабеле заводского дефекта, зафиксированного соответствующим актом, может быть предъявлена рекламация изготовителю.
- 3.1.12. Если для ремонта линии не требуется производить вырезки поврежденного участка, то анализ причин повреждения может производиться на месте ремонта.
- 3.1.13. Образцы кабелей с разными видами повреждений, в том числе с заводскими дефектами, рекомендуется сохранять в лаборатории для использования в качестве наглядных пособий при обучении персонала, а также для представления их экспертам (при предъявлении рекламаций, арбитражных разбирательствах и т.д.).
- 3.1.14. Результаты испытаний кабельных линий, причины их повреждения и выполненные мероприятия по ремонтам должны заноситься в паспорт кабельной линии.
 - 3.2. Определение мест повреждений на кабельных линиях.
- 3.2.1. Работы по определению мест повреждения (ОМП) подразделяются на следующие три этапа;
 - диагностика повреждений определение характера повреждения, выполнение предварительных измерений расстояний до места повреждения.

На этой стадии ОМП устанавливается необходимость предварительного прожигания;

- определение зоны предполагаемого повреждения одним из относительных методов;
- уточнение местонахождения повреждения одним из абсолютных методов.
- 3.2.2. При определении места повреждения изоляции и оболочки рекомендуется пользоваться ниже перечисленными методами и оборудованием.
- 3.2.3. Метод ОМП кабельной линии выбирается в зависимости от характера повреждения. Повреждения кабелей могут быть подразделены на следующие виды:
- 1. повреждения изоляции, вызывающее замыкание одной фазы на землю;

- 2. обрыв одной, двух и трех фаз (с заземлением или без заземления фаз);
- 3. сложные повреждения, представляющие комбинации из вышеупомянутых видов повреждений.
- 3.2.4. Измерения производятся на кабельной линии, которая отсоединена от источника питания и от которой отсоединены все электроприемники.
- 3.2.5. Трасы кабельных линии, отключившихся аварийно, должны быть осмотрены. При необходимости производится уточнение трассы кабельной линии.
- 3.2.6. Производится осмотр кабельных линии в кабельных сооружениях в целях обнаружения явного повреждения. Осмотру подлежат также муфты.
 - 3.2.7. Для установления характера повреждения кабельной линии следует:
 - измерить сопротивление изоляции каждой токопроводящей жилы по отношению к земле;
 - определить целостность (отсутствие обрыва) токопроводящих жил;
 - при необходимости прибором P5-5 (или ему подобным) уточнить характер повреждения и проверить длину поврежденных жил кабеля.
- 3.2.8. Измерение сопротивления изоляции производится мегаомметром на напряжение 2500 В.
- 3.2.9. Если мегаомметром не удается определить характер повреждения, то необходимо снизить сопротивление изоляции в месте повреждения, что может быть достигнуто дополнительным поочередным испытанием высоким напряжением (от испытательной установки) изоляции токоведущих жил по отношению к контуру заземления и экрана по отношению к контуру заземления.
- 3.2.10. Результаты измерений в целях установления характера повреждения должны быть занесены в протокол измерений и на рабочую схему ОМП и используются для выбора методов и технологии ОМП.
- 3.2.11. После определения характера повреждения кабельной линии выбирается метод, наиболее подходящий для определения места повреждения в данном конкретном случае. Рекомендуется в первую очередь определить зону, в границах которой расположено повреждение. Определение зоны повреждения производится одним из следующих относительных методов
- импульсным (локационным);
- колебательного разряда (волновым).

После определений зоны повреждений производится определение места повреждения непосредственно на трассе кабельной линии одним из следующих абсолютных методов:

- индукционным;
- акустическим;
- методом накладной рамки.

Для точного определения места повреждения, как правило, пользуются сочетанием относительного и абсолютного методов.

3.2.12. ОМП защитных оболочек кабеля, проложенного в земле.

- 3.2.12.1. С целью исключения повреждения изоляции жилы кабеля при ОМП оболочек категорически запрещается прожигание оболочек в месте повреждения.
- 3.2.12.2. При ОМП оболочек первоначально производится определение зоны повреждения методом падения напряжения, а затем точное определение места повреждения импульсно- контактным методом.
- 3.2.12.3. Перед проведением работ по ОМП оболочек необходимо предварительно ознакомиться с паспортными данными линии и результатами испытаний оболочек напряжением.
- 3.2.12.4. Схема определения зоны повреждения пластмассовых оболочек кабеля методом падения напряжения дана на рис.1 *Приложения 3*.

Регулируемый источник постоянного напряжения подключается между металлическим экраном и землей, при этом экран перед измерением должен быть отсоединен от контура заземления.

При присоединении вывода источника к экрану поврежденного кабеля (точка 1) измеряется напряжение от начала кабеля до места повреждения (U1), а при присоединении вывода источника к жиле второго кабеля (точка 2)- напряжение от конца кабеля до места повреждения (U2).

При обоих измерениях устанавливается одна и также величина тока, значение которого не должно превышать 0,4 А. Время каждого измерения должно быть не более 1 мин.

3.2.12.5. Расстояние от начала кабеля до места повреждения определяется по формуле:

$$Lx = Lk \cdot \frac{U1}{U1 + U2} \quad ,$$

где

Lx -расстояние от начала кабеля до места повреждения оболочки, м;

Lk- общая длина кабеля, м;

U1 - напряжение на участке от начала кабеля до места повреждения, мВ;

U2 -напряжение на участке от конца кабеля до места повреждения, мВ.

- 3.2.12.6. Точное определение места ОМП оболочек производится импульсно-контактным методом.
- 3.2.12.7. Схема ОМП пластмассовых оболочек кабеля импульсно-контактным методом дана на рис.2 *Приложения 3*.
- 3.2.12.8. Металлический экран поврежденной фазы кабеля перед измерением должен быть отсоединен от контура заземления.
- 3.2.12.9. В качестве источника напряжения используется импульсный генератор, состоящий из выпрямительной установки с максимальным выпрямленным напряжением не менее 10 кВ, батареи конденсаторов и разрядника с регулируемым воздушным промежутком для получения импульсов до 10 кВ.

3.2.12.10. При ОМП конденсатор заряжается до определенного напряжения и разряжается на искровой промежуток, включенный между металлическим экраном и конденсатором.

При этом происходит пробой от экрана на землю в месте повреждения пластмассовой оболочки и возникновение поля растекания тока вокруг места повреждения.

- 3.2.12.11. Энергия разряда конденсатора $W=1/2\cdot(C\cdot U^2)$ достаточная для обнаружения места повреждения оболочек и не вызывающая повреждения изоляции жил кабеля, находится в пределах от 54 до 450Дж.
- 3.2.12.12. В качестве индикатора должен применяться многопредельный прибор для измерения постоянного тока и напряжения со средней нулевой точкой и большим входным сопротивлением, например, ампер-вольметр М231.
- 3.2.12.13. Индикатор подсоединяется к металлическим зондам, которые при измерении втыкаются в почву вдоль оси кабеля точно по трассе на глубину 5-8 см на расстоянии 2-3 м друг от друга. Расстояние между зондами во время измерения поддерживается постоянным. Измерение необходимо начинать с точки трассы, заведомо находящейся до места повреждения. До места повреждения стрелка прибора будет отклоняться в одну сторону, в месте повреждения показание прибора будет равно 0, а за местом повреждения стрелка прибора будет отклоняться в противоположную сторону.
 - 3.3. Рекомендации по ремонту кабельных линий.
- 3.3.1. Ремонт кабельных линий производится по плану- графику, утвержденному руководством предприятия.
- 3.3.2. План-график ремонтов составлен на основе записей в журналах обходов и осмотров, результатов испытаний и измерений, а также по данным диспетчерских служб.

Объем ремонтов уточняется на основании дополнительной проверки на месте инженерно-техническим персоналом всех выявленных неисправностей кабелей и трасс кабельных линий, что позволяет своевременно подготовить необходимые материалы и механизмы для выполнения ремонта.

В план-график включаются ремонтные работы, не требующие срочного их Очередность работ устанавливается выполнения. производства таких (участка, руководством района службы) электрической сети цеха электростанции. Очередность выполнения срочных ремонтов определяется руководством предприятия.

- 3.3.3. Ремонт находящихся в эксплуатации кабельных линий производится эксплуатационным персоналом или персоналом специализированных организаций.
- 3.3.4. Вскрытие кабеля для ремонта производится после сверки на месте соответствия расположения кабеля с расположением его на плане трассы, а также

после проверки отсутствия напряжения на этом кабеле и прокалывания его в соответствии с требованиями действующих правил техники безопасности.

- 3.3.5. При ремонте кабельной линии должны применяться вставки из предварительно испытанного напряжением отрезка кабеля соответствующей марки и сечения.
- 3.3.6. Перед монтажом соединительных муфт при ремонте кабельной линии фазировку рекомендуется производить непосредственно на месте монтажа. Допускается производить фазировку на концевых заделках после монтажа соединительных муфт.

Фазировка может производиться с применением мегаомметра с фазировочным приспособлением или с использованием телефонных трубок.

3.3.7. При выполнении ремонта открыто проложенных кабелей при необходимости производится также ремонт кабельных сооружений (туннелей, колодцев, каналов, шахт и пр,).

Одновременно с ремонтом кабелей производится проверка и восстановление бирок, предупредительных и опознавательных надписей и пр.

3.3.8. При повреждении оболочки кабеля осмотр дефекта должен производиться при обязательном присутствии шеф-инженера, с составлением акта. Вопрос о возможности ремонта оболочки решает шеф-инженер.

Для ремонта оболочки должна применяться ремонтная термоусаживаемая манжета, допускается выполнять ремонт оболочки лентой ЛЭТСАР.

При ремонте оболочки кабеля и отсутствии повреждений экрана на кабеле произвести зачистку оболочки с помощью скребка на расстоянии до 50 мм от края поврежденной оболочки и протереть зачищенные места оболочки бензином.

После высыхания бензина оболочку на длине 50 мм от края повреждения и место повреждений промазать лаком КО-916, дать лаку подсохнуть, затем наложить на место повреждения с заходом на 50 мм на оболочку кабеля у места повреждения два слоя ленты ЛЭТСАР ЛП 50%-ным перекрытием.

Наложить на обмотку из лент ЛЭТСАР ЛП 2 слоя липкой ПВХ-ленты с 50%-ным перекрытием с заходом ленты на 5-10 мм на оболочку кабеля.

- 3.3.9. По окончании ремонтных работ на кабельной линии должен быть составлен исполнительный эскиз. По этому эскизу должны быть произведены все исправления в технической документации (планы трасс, схемы, паспортные карты и пр.). На вновь смонтированные муфты должны быть установлены маркировочные бирки.
- 3.3.10. После капитального ремонта кабельной линии должны быть произведены испытания и измерения в соответствии с установленными нормами.
- 3.3.11. После ремонтов на кабельных линиях, не связанных с отсоединением концов кабеля (восстановление лакового покрытия на фазах, исправление заземлений, обновление, или смена маркировочных бирок), фазировка линии и испытание ее напряжением не производится.

- 3.3.12. При выполнении ремонтных работ на кабельных линиях, проложенных в земле, и особенно в кабельных сооружениях должны соблюдаться следующие меры пожарной безопасности:
 - при пользовании открытым огнем (газовая горелка, паяльная лампа и т.п.) на месте работ должны быть огнетушители (не менее двух), ведра с сухим мелким песком, кошма или брезент, листы асбеста для ограждения работающих кабелей и плотно закрывающийся металлический ящик с крышкой для сбора отходов: разделки кабеля и других горючих материалов;
 - бензин на месте работы должен храниться в металлической посуде с пробкой на резьбе;
 - заправка и доливка паяльных ламп должны производиться вне помещений;
 - разжигаемая лампа должна быть обращена на огнеупорную стену или лист асбеста.

4. Надзор за состоянием кабельных линий.

- 4.1. Надзор за трассами кабельных линий, кабельными сооружениями и кабельными линиями в целях проверки их состояния и соблюдения правил охраны электрических сетей производится периодическим обходом и осмотром оперативным персоналом или специально выделенными для этого монтерами, инженерно-техническим персоналом в сроки, предусмотренные ПТЭ и местными инструкциями.
- 4.2. Внеочередные обходы и осмотры производятся в период паводков и после ливней, а также при отключении линий релейной защитой.
- 4.3. При обходах и осмотрах трасс кабельных линий, проложенных на открытых территориях, необходимо:
- проверять, чтобы на трассе не производились не согласованные с энергопредприятием работы (строительство сооружений, раскопка земли, посадка растений, устройство складов, забивка свай, столбов и т.п.), а также чтобы не было завалов трасс снегом, мусором, шлаком, отбросами, не было провалов и оползней грунта;
- осматривать места пересечения кабельных трасс с железными дорогами, обращая внимание на наличие предупредительных плакатов и на надежное металлическое соединение рельсов электрифицированных железных дорог в местах стыков;
- осматривать места пересечения кабельных трасс шоссейными дорогами, канавами и кюветами;
- осматривать состояние устройств и кабелей, проложенных по мостам, дамбам, эстакадам и другим подобным сооружениям;

- проверять в местах выхода кабелей на стены зданий или опоры воздушных линий электропередачи наличие и состояние защиты кабелей от механических повреждений, исправность концевых муфт.
- 4.4. При обходах и осмотрах трасс закрытых территориях, кроме выполнения рекомендаций п. 4.3, необходимо:
- при выявлении нарушений правил охраны электрических сетей на трассах пиний вручать предписание об их устранении;
- в случае выявления не устраненных, в установленный при предыдущем осмотре срок недостатков составлять протокол о нарушении.
- 4.5. Осмотр кабельных сооружений и кабельных линий, проложенных в кабельных сооружениях, должен производиться специально выделенным персоналом электростанции или электрической сети.

При осмотре кабельных сооружений и кабельных линий, проложенных в кабельных сооружениях, необходимо:

- проверять внешнее состояние соединительных муфт и концевых муфт;
- проверять, нет ли смещений и провесов кабелей, соблюдены ли предусматриваемые ПУЭ расстояния между кабелями;
- проверять исправность освещения;
- измерять температуру воздуха в помещениях;
- проверять исправность устройств сигнализации и пожаротушения;
- проверять состояние строительной части, дверей, люков и их запоров, крепежных конструкций, наличие разделительных несгораемых перегородок и плотности заделки кабелей в местах прохода через стены, перекрытия и перегородки;
- проверять наличие и правильность маркировки кабелей;
- проверять, нет ли посторонних предметов, строительных и монтажных материалов, обтирочных концов, тряпок, мусора и пр.;
- проверять, не проникают ли грунтовые и сточные воды, нет ли технологических отходов производства.
- 4.6. В случаях, когда кабельные сооружения и распределительные устройства или подстанции принадлежат разным организациям, осмотр концевых участков и концевых муфт кабельных линий в РУ и КС должен производиться представителями этих организаций.
 - 4.7. Результаты обходов и осмотров оформляются следующим образом:
- 4.7.1. Результаты обходов и осмотров кабельных линий, их трасс и кабельных сооружений регистрируются в журнале по обходам и осмотрам. Кроме того, все

обнаруженные дефекты на трассах кабельных линий должны быть записаны в журнал дефектов и неполадок или в карты дефектов.

- 4.7.2. При выявлении дефектов, требующих немедленного устранения, производящий обход и осмотр обязан немедленно сообщить об этом своему непосредственному начальнику, дежурному персоналу организации, эксплуатирующей кабельную линию и ответственному персоналу предприятия (организации) владельца электроустановки.
- 4.7.3. Результаты осмотра трасс кабельных линий инженерно-техническим персоналом регистрируются в журнале дефектов и неполадок или в карте дефектов.
- 4.7.4. При обнаружении на трассе кабельных линий производства земляных работ, выполняемых без разрешения предприятия (организации) владельца кабельной сети, а также других нарушений действующих правил охраны электрических сетей производящий обход и осмотр должен принять меры по предотвращению выше указанных нарушений, сообщить об этом своему непосредственному начальнику и сделать запись в журнале обходов и осмотров.
- 4.7.5. Результаты осмотров открыто проложенных кабельных линий и кабельных сооружений регистрируются инженерно-техническим персоналом, производящим осмотр, соответственно в паспортах данного сооружения и в журнале дефектов и неполадок кабельных линий.
- 4.7.6. При обнаружении дефектов в результате осмотров концевых участков кабелей и концевых муфт в распределительных устройствах электростанций и подстанций сведения о них передаются владельцу.

Документация на кабельную линию

- 1. Проект кабельной линии со всеми согласованиями, перечнем отклонений от проекта и указанием, с кем и когда эти отклонения согласованы.
- 2. Исполнительный чертеж трассы, выполненный в масштабе 1:200 или 1:500 в зависимости от развития сети в районе трассы и насыщенности территории коммуникациями.

По всей длине трассы линии на исполнительной документации должны быть обозначены координаты трассы и муфт по отношению к существующим капитальным сооружениям или к специально установленным знакам.

- 3. Кабельный журнал и контрольно учетный паспорт на соединительные муфты кабельной линии, при прокладке двух кабелей и более в траншее требуется план их раскладки.
- 4. Акты на вскрытые работы, в том числе акты и исполнительные чертежи на пересечения и сближения кабелей со всеми подземными коммуникациями, акты на монтаж кабельных муфт и акты на осмотр кабелей, проложенных в траншеях и каналах, перед закрытием.
- 5. Акты приемки траншей, каналов, туннелей, блоков коллекторов и т.п. под монтаж кабелей.
 - 6. Протокол заводских испытаний кабелей.
- 7. Протокол осмотров и проверки изоляции кабелей на барабанах перед прокладкой.
 - 8 Диаграмма тяжения во время механизированной прокладки кабеля.
 - 9. Протокол испытаний кабельной линии после прокладки.
- 10.Протокол подогрева кабелей на барабане перед прокладкой при низких температурах.
 - 11. Заводские паспорта на оборудование и кабель.
- 12. Схема фазировки линий (соединение одноименных фаз оборудования, присоединяемого к концевым муфтам линии).
 - 13. Акты на монтаж муфт.
 - 14. Паспорт кабельной линии, составленный по установленной форме.

Приложение 2

Коэффициенты, учитывающие изменение токов кабелей в зависимости от количества кабелей и условий прокладки в кабельных сооружениях.

Вид прокладки	Кол-во гориз. рядов кабелей	Размещение кабелей	Коэффицие снижения тока количестве це горизонтальном		а при пей в	
			1	2	3	
Прокладка в кабельном канале на полу	1	d d d d d d d d d d d d d d d d d d d	0,92	0,89	0,88	
Прокладка в кабельном лотке (без циркуляции воздуха).	1 2 3 4-6		0,92 0,87 0,84 0,82	0,89 0,84 0,82 0,80	0,88 0,83 0,81 0,79	
Прокладка в кабельном лотке (свободная циркуляция воздуха).	1 2 3 4-6		1,00 0,97 0,96 0,94	0,97 0,94 0,93 0,91	0,96 0,93 0,93 0,90	
Кабели закреплены на стенах.	3		0,94	0,91	0,89	
Расстоянии между ка от стены а≥ 20 мм.	белями	= диаметру кабеля, расстояние	1,00	1,00	1,00	

Продолжение приложения 2

Вид прокладки	Кол-во гориз. рядов кабелей	Размещение кабелей	Коэффициент снижения тока пр количестве цепей горизонтальном ря			
			1	2	3	
Прокладка в кабельном канале на полу	1	2d 2d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,95	0,90	0,88	
Прокладка на полках без циркуляции воздуха	1 2 3 4-6	a a≥20 mm a a≥20 mm	0,95 0,90 0,88 0,86	0,90 0,85 0,83 0,81	0,88 0,83 0,81 0,79	
Прокладка в каб. конструкциях с цир-куляцией воздуха	1 2 3 4-6	2d 2d 00 00 00 00 00 00 00 00 00 00 00 00 00	1,00 1,00 1,00 1,00	0,98 0,95 0,94 0,93	0,96 0,93 0,92 0,90	
Кабели закреплены на стенах	3	2d 2d 2d	0,89	0,86	0,84	
Расстоянии между к 20 мм.	абелямі	и =2d, расстояние от стены а≥	1,00	1,00	1,00	

Схема определения расстояния до места повреждения (зоны повреждения) пластмассовых оболочек кабеля методом падения напряжения.

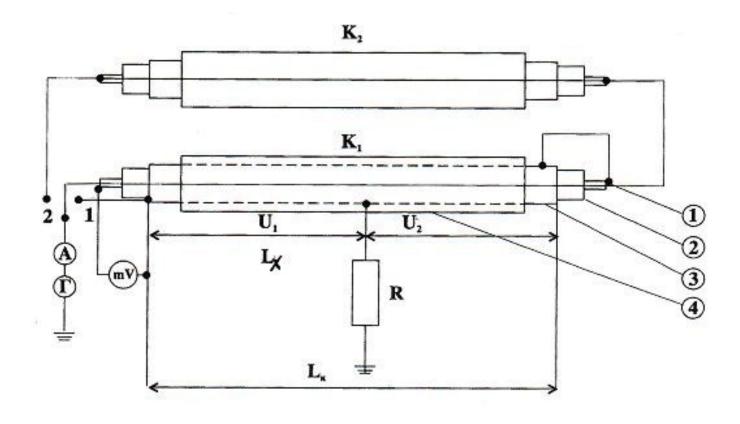


Рис. 1

 Γ - источник постоянного тока

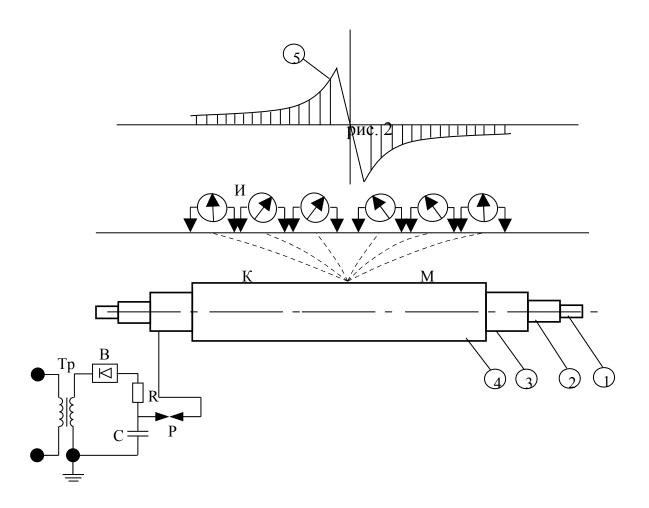
А - амперметр

mV •-милливольтметр

В - переходное сопротивление в месте повреждения

К 1 - кабель с повреждённой оболочкой

К 2 - кабель с неповреждённой оболочкой


1 - токопроводящая жила

2 - изоляция кабеля

3 - металлический экран кабеля

4 - пластмассовая оболочка

Схема определения точного места повреждения пластмассовых оболочек кабеля импульсноконтактным методом:

Тр - трансформатор

В - выпрямитель

В - ограничивающее сопротивление

С - конденсатор

Р - разрядник

К - кабель

МП - место повреждения оболочки

И - прибор, и щупы для измерения пиковых значений шагового напряжения

1 - токопроводящая жила

2 - изоляция кабеля

3 - металлический экран

4 - пластмассовая оболочка

5 - принимаемый сигнал в зависимости от расстояния от места повреждения

Приложение 4 Основные расчетные конструктивные размеры кабелей на напряжение 6,10,20,35 кВ

Таблица 12

				Одножильнь	не кабели на	номинально	е напряжен	ние 6 кВ			
Сече-	Диаметр	Толщина	Толщина	Диаметр	Толщина		Расче	етный нару	жный диаме	етр кабеля, мм	1
ние	жилы,	экрана по	изоляции,	по	экрана по	АПвП,ПвП,	АПвПг,	АПвПу,	АПвПуг,	АПвПу2г	ПвВнг(А)-ХЛ
жилы	MM	жиле, мм	MM	изоляции,	изоляции,	АПвВ,ПвВ,	ПвПг	ПвПу	ПвПуг,	ПвПу2г	АПвВнг(А)-ХЛ
MM ²				MM	MM	АПвВнгLS, ПвВнг-LS			АПвП2г, ПвП2г		
35	6.8	0.6	2.5	13, 0	0.6	22.2	23.2	23.4	24.3	24.9	27.9
50	7.9	0.6	2.5	14.1	0.6	23.6	24.4	24.6	25.4	26.0	29.0
70	9.4	0.6	2.5	15.6	0.6	25.1	25.9	26.1	26.9	27.5	30.5
95	11.3	0.6	2.5	17.5	0.6	26.6	27.6	27.8	28.8	29.4	32.4
120	12.8	0.6	2.5	19,0	0.6	28.0	29.1	29.3	30.3	30.9	33.9
150	14.6	0.6	2.5	20.8	0.6	30.3	31.1	31.3	32.1	32.7	35.7
185	16.2	0.6	2.5	22.4	0.6	32.0	32.7	33.1	33.7	34.3	37.3
240	18.4	0.6	2.6	24.8	0.6	34.5	35.3	35.5	36.4	37.0	40.0
300	21.0	0.6	2.8	27.8	0.6	37.0	38.0	38.1	38.9	39.5	42.7
400	23.8	0.6	3.0	31,0	0.6	40.6	41.3	41.6	42.3	43.1	45.9
500	26.6	0.6	3.2	34.2	0.6	43.7	44.5	44.7	45.7	46.8	49.7
630	29.8	0.6	3.2	37.4	0.6	47.4	47.5	47,9	49.5	50,1	53.4
800	34.2	0.6	3.2	41.8	0.6	51.1	51.5	51,7	53.1	55,3	58.3

продолжение приложения 4 Таблица 13

			(е кабели на і	номинальное	напряжен	ие 10 кВ			
Сече-	Диаметр	Толщина	Толщина	Диаметр	Толщина		Расче	етный наруж	ный диаметр	кабеля, мм	
ние	жилы,	экрана по	изоляции,	по	экрана по	АПвП,ПвП,	АПвПг,	АПвПу,	АПвПуг,	АПвПу2г	ПвВнг(А)-ХЛ
жилы	MM	жиле, мм	MM	изоляции,	изоляции,	АПвВ,ПвВ,	ПвПг	ПвПу	ПвПуг,	ПвПу2г	АПвВнг(А)-ХЛ
MM ²				MM	MM	АПвВнгLS, ПвВнг-LS			АПвП2г, ПвП2г		
35	6,8	0,6	3,4	14,8	0,6	-	-	-	-	-	30.7
50	7.9	0.6	3.4	15.9	0.6	25.5	26.2	26.5	27.2	28.2	31.8
70	9.4	0.6	3.4	17.4	0.6	27.0	27.7	28.0	28.7	29.7	33.3
95	11.3	0.6	3.4	19.3	0.6	28.9	29.6	29.9	30.6	31.6	35.2
120	12.8	0.6	3.4	20.8	0.6	30.4	31.1	31.4	32.1	33.1	36.7
150	14.6	0.6	3.4	22.6	0.6	32.2	32.9	33.2	33.9	34.9	38.5
185	16.2	0.6	3.4	24.2	0.6	33.8	34.5	34.8	35.5	36.5	40.1
240	18.4	0.6	3.4	26.4	0.6	36.3	36.7	37.3	38.0	39.0	42.6
300	21.0	0.6	3.4	29.0	0.6	38.4	39.1	39.4	40.1	41.1	44.9
400	23.8	0.6	3.4	31.8	0.6	41.4	42.1	42.4	43.1	44.1	48.1
500	26.6	0.6	3.4	34.6	0.6	44.4	45.1	45.4	46.1	47.1	51.1
630	29.8	0.6	3.4	37.8	0.6	48.8	49.2	49.8	50.5	51.5	54.8
800	34.2	0.6	3.4	42.2	0.6	52.5	52.9	53.2	53.9	55.9	59,7

продолжение приложения 4

Таблица 14

			(е кабели на н	оминальное напр	яжение 20 кВ			
Сече-	Диаметр	Толщина	Толщина	Диаметр	Толщина		Расчетный нару	ужный диаметр	кабеля, мм	
ние	жилы,	экрана по	изоляции,	по	экрана по	АПвП,ПвП,	АПвПг,	АПвПу,	АПвПуг,	АПвПу2г
жилы	MM	жиле, мм	MM	изоляции,	изоляции,	АПвВ,ПвВ,	ПвПг	ПвПу	ПвПуг,	ПвПу2г
MM^2				MM	MM	АПвВнгLS,			АПвП2г,	
						ПвВнг-LS			ПвП2г	
50	7.9	0.6	5.5	20.1	0.6	29.7	30.4	30.7	31.4	32.4
70	9.4	0.6	5.5	21.6	0.6	31.2	31.9	32.2	32.9	33.9
95	11.3	0.6	5.5	23.5	0.6	33.1	33.8	34.1	34.8	35.8
120	12.8	0.6	5.5	25.0	0.6	34.6	35.3	35.6	36.3	37.3
150	14.6	0.6	5.5	26.8	0.6	36.4	37.1	37.4	38.1	39.1
185	16.2	0.6	5.5	28.4	0.6	38.0	38.7	39.0	39.7	40.7
240	18.4	0.6	5.5	30.6	0.6	40.5	41.2	41.5	42.2	43.2
300	21.0	0.6	5.5	33.2	0.6	42.6	44.3	43.6	44.3	45.3
400	23.8	0.6	5.5	36.0	0.6	45.6	46.3	46.6	47.3	48.7
500	26.6	0.6	5.5	38.8	0.6	49.0	49.7	50.0	50.7	51.7
630	29.8	0.6	5.5	42.0	0.6	53.0	53.7	54.0	54.7	56.1
800	34.2	0.6	5.5	46.4	0.6	56.5	57.3	57.6	58.3	59.3

Продолжение приложения 4

Таблица 15

			(е кабели на н	номинальное напр	яжение 35 кВ			
Сече-	Диаметр	Толщина	Толщина	Диаметр	Толщина	Pac	четный нару	жный диамет	р кабеля, мм	
ние	жилы,	экрана по	изоляции,	по	экрана по	АПвП,ПвП,	АПвПг,	АПвПу,	АПвПуг,	АПвПу2г
жилы	MM	жиле, мм	MM	изоляции,	изоляции,	АПвВ,ПвВ,	ПвПг	ПвПу	ПвПуг,	ПвПу2г
MM^2				MM	MM	АПвВнг-LS,			АПвП2г,	-
						ПвВнг-LS			ПвП2г	
50	7.9	0.6	8.5	26.1	0.6	35.7	36.4	36.7	37.4	38.4
70	9.4	0.6	8.5	27.6	0.6	37.2	37.9	38.2	38.9	39.9
95	11.3	0.6	8.5	29.5	0.6	39.1	39.8	40.1	40.8	41.8
120	12.8	0.6	8.5	31.0	0.6	40.6	41.3	41.6	42.3	43.3
150	14.6	0.6	8.5	32.8	0.6	42.4	43.1	43.4	44.1	45.1
185	16.2	0.6	8.5	34.4	0.6	44.0	44.7	45.0	45.7	46.7
240	18.4	0.6	8.5	36.6	0.6	46.5	47.6	47.5	48.6	49.6
300	21.0	0.6	8.5	39.2	0.6	49.0	49.7	50.0	50.7	51.7
400	23.8	0.6	8.5	42.0	0.6	52.0	52.7	53.0	53.7	54.7
500	26.6	0.6	8.5	44.8	0.6	55.4	56.1	56.4	57.1	58.1
630	29.8	0.6	8.5	48.0	0.6	59.4	60.1	60.4	61.1	62.1
800	34.2	0.6	8.5	52.4	0.6	62.6	63.3	63.6	64.3	65.3

продолжение приложения 4

Таблица 16

			Tpex	жильные каб	ели на номи	нальное напря	яжение 6 к	В			
Сечение	Диаметр	Толщина	Толщина	Диаметр	Толщина	Расчетный наружный диаметр кабеля, мм					
жилы,	жилы,	экрана по	изоляции,	по	экрана по	АПвП, ПвП	АПвПу	АПвБП, ПвБП,	ПвВнг(А)-ХЛ	ПвБВнг(А)-ХЛ	
MM^2	MM	жиле,	MM	изоляции,	изоляции,	АПвПг,ПвПг АПвВ, ПвВ,	ПвПу, АПвПуг	АПвБПг,ПвБПг АПвБВ,ПвБВ,	АПвВнг(А)-ХЛ	АПвБВнг(А)- ХЛ	
		MM		MM	M	АПВБ, ПВБ, АПвВнгLS,	ПвПуг ПвПуг	АПВБВ,ПВБВ, АПВБВнг-LS		AJI	
						ПвВнг-LS		ПвБВнг-LS			
35	6.8	0.6	2.5	13, 0	0.6	41.4	42.4	44.6	43.2	47.8	
50	7.9	0.6	2.5	14.1	0.6	47.6	48.2	50.8	45.6	50.2	
70	9.4	0.6	2.5	15.6	0.6	48.3	48.9	51.5	49.2	53.4	
95	11.3	0.6	2.5	17.5	0.6	51.3	51.9	54.5	53.3	57.9	
120	12.8	0.6	2.5	19,0	0.6	54.3	54.8	57.8	56.9	61.1	
150	14.6	0.6	2.5	20.8	0.6	58.6	59.2	61.8	60.8	65.0	
185	16.2	0.6	2.5	22.4	0.6	62.4	62.9	65.6	64.2	68.4	
240	18.4	0.6	2.6	24.8	0.6	67.6	68.6	70.8	70.1	74.3	
300	21,0	0,6	2,8	27,8	0,6	-	-	-	75.8	80.0	

продолжение приложения 4 Таблица 17

			Трехжи	льные кабел	и на номина	льное напряж	ение 10 кВ				
Сечение	Диаметр	Толщина	Толщина	Диаметр	Толщина	Расчетный наружный диаметр кабеля, мм					
жилы,	жилы,	экрана по	изоляции,	по	экрана по	АПвП, ПвП	АПвПу,	АПвБП, ПвБП,	ПвВнг(А)-ХЛ	ПвБВнг(А)-ХЛ	
MM^2	MM	жиле,	MM	изоляции,	изоляции,	АПвПг,ПвПг	ПвПу,	АПвБПг,ПвБПг,	АПвВнг(А)-ХЛ	АПвБВнг(А)-	
		MM		MM	MM	АПвВ, ПвВ, АПвВнгLS,	АПвПуг ПвПуг	АПвБВ,ПвБВ, АПвБВнг-LS		ХЛ	
						ПвВнг-LS	J	ПвБВнг-LS			
35	6,8	0,6	3,4	14,8	0,6	-	-	-	45.7	51.7	
50	7.9	0.6	3.4	15.9	0.6	48.9	50.8	54.0	49.9	54.1	
70	9.4	0.6	3.4	17.4	0.6	52.1	54.0	57.6	53.1	57.7	
95	11.3	0.6	3.4	19.3	0.6	56.6	58.5	61.7	57.6	61.8	
120	12.8	0.6	3.4	20.8	0.6	59.8	61.7	64.9	60.8	65.0	
150	14.6	0.6	3.4	22.6	0.6	63.7	65.6	68.8	64.7	68.9	
185	16.2	0.6	3.4	24.2	0.6	67.1	69.0	72.2	68.1	72.3	
240	18.4	0.6	3.4	26.4	0.6	72.5	74.4	77.6	73.5	77.7	
300	21,0	0,6	3,4	29,0	0,6	-	-	-	78.4	82.6	

продолжение приложения 4 Таблица 18

			Трехжиль	ные кабели	на номиналь	ное напряжение 2	20кВ	
Сечение	Диаметр	Толщина	Толщина	Диаметр	Толщина	Расчетнь	ый наружный диамет	р кабеля, мм
жилы,	жилы,	экрана по	изоляции,	по	экрана по	АПвП, ПвП	АПвПу,	АПвБП, ПвБП,
MM^2	MM	жиле,	MM	изоляции,	изоляции,	АПвПг,ПвПг ПвПу,		АПвБПг,ПвБПг,
		MM		MM	MM	АПвВ, ПвВ, АПвПуг		АПвБВ,ПвБВ,
						АПвВнгLS,	ПвПуг	АПвБВнг-LS
						ПвВнг-LS		ПвБВнг-LS
50	7.9	0.6	5.5	20.1	0.6	59.2	60.2	63.4
70	9.4	0.6	5.5	21.6	0.6	62.4	63.4	66.6
95	11.3	0.6	5.5	23.5	0.6	66.5	67.5	70.7
120	12.8	0.6	5.5	25.0	0.6	69.7	70.7	73.9
150	14.6	0.6	5.5	26.8	0.6	73.6	74.6	77.8
185	16.2	0.6	5.5	28.4	0.6	77.0	78.0	81.2
240	18.4	0.6	5.5	30.6	0.6	82.4	83.4	86.6

продолжение приложения 4 Таблица 19

	Трехжильные кабели на номинальное напряжение 35кВ												
Сечение	Диаметр	Толщина	Толщина	Диаметр	Толщина	Расчетный наружный диаметр кабеля, мм							
жилы,	жилы,	экрана по	изоляции,	по	экрана по	АПвП, ПвП АПвПу, АП		АПвБП, ПвБП,					
MM^2	MM	жиле,	MM	изоляции,	изоляции,	АПвПг,ПвПг	ПвПу,	АПвБПг,ПвБПг,					
		MM		MM	MM	АПвВ, ПвВ,	АПвПуг	АПвБВ,ПвБВ,					
						АПвВнгLS,	ПвПуг	АПвБВнг-LS					
						ПвВнг-LS		ПвБВнг-LS					
50	7.9	0.6	8.5	26.1	0.6	72.1	73.1	76.3					
70	9.4	0.6	8.5	27.6	0.6	75.3	76.3	79.5					
95	11.3	0.6	8.5	29.5	0.6	79.4	80.4	83.6					
120	12.8	0.6	8.5	31.0	0.6	82.6	83.6	86.8					

Расчетная масса кабелей

Таблица 20

			Одножиль	ные кабели і	на номинал	ьное напряж	кение 6 к	В		
Число х					Расчетная в	масса, кг/км	ſ			
сеч. жилы/	АПвВнг-LS	ПвВнг-LS	АПвП,	ПвП,	АПвПу,	ПвПу,	АПвВ	ПвВ	АПвВнг(А)-ХЛ	ПвВнг(А)-ХЛ
сеч. экрана,			АПвПг,	ПвПг,	АПвПуг,	ПвПуг,				
MM ²			АПвП2г	ПвП2г	АПвПу2г,	ПвПу2г				
1x 35/16	658	877	549	768	591	811	617	836	1009	1222
1x 50/16	736	1049	620	933	664	977	692	1005	1087	1373
1x 70/16	831	1270	707	1146	754	1193	784	1223	1203	1623
1x 95/16	943	1538	810	1405	861	1456	893	1488	1350	1930
1x 120/16	1050	1802	909	1661	962	1714	997	1748	1480	2204
1x 150/25	1287	2226	1134	2073	1191	2131	1229	2169	1719	2630
1x 185/25	1431	2589	1268	2427	1328	2487	1369	2528	1894	3031
1x 240/25	1653	3156	1477	2980	1542	3045	1586	3090	2159	3645
1x 300/25	1900	3779	1710	3589	1780	3659	1828	3707	2423	4316
1x 400/35	2374	4879	2164	4670	2241	4745	2294	4800	2911	5267
1x 500/35	2755	5887	2528	5660	2611	5743	2669	5801	3429	6520
1x 630/35	3255	7201	2989	6935	3049	6996	3154	7101	3965	7894
1x 800/35	3834	8845	3546	8587	3611	8622	3725	8736	4631	9752

продолжение приложения 4 Таблица 21

		Одн	ожильные	кабели на	номинально	е напряж	ение 10 в	κB		
Число х					Расчетная м	асса, кг/	KM			
сеч. жилы/ сеч. экрана, мм²	АПвВнг-LS	ПвВнг-LS	АПвП, АПвПг, АПвП2г	ПвП, ПвПг, ПвП2г	АПвПу, АПвПуг, АПвПу2г,	ПвПу, ПвПуг, ПвПу2г	АПвВ	ПвВ	АПвВнг(А)-ХЛ	ПвВнг(А)-ХЛ
1x35/16	-	-	-	-	-	-	-	-	1189	1402
1x 50/16	820	1120	670	960	710	1000	760	1060	1274	1560
1x 70/16	920	1350	760	1180	810	1230	860	1290	1399	1819
1x 95/16	1055	1640	880	1460	930	1510	990	1580	1558	2138
1x 120/16	1170	1900	980	1710	1040	1760	1110	1830	1696	2421
1x 150/25	1390	2300	1200	2110	1250	2160	1320	2230	1947	2857
1x 185/25	1555	2690	1340	2480	1400	2540	1480	2610	2131	3268
1x 240/25	1780	3240	1555	3040	1620	3100	1700	3180	2396	3883
1x 300/25	2000	3890	1755	3650	1820	3710	1910	3800	2644	4538
1x 400/35	2430	4780	2160	4520	2230	4590	2330	4680	3168	5523
1x 500/35	2820	5910	2540	5630	2610	5700	2720	5810	3615	6706
1x 630/35	3390	7240	3030	6960	3140	7040	3270	7170	4164	8094
1x 800/35	3880	8830	3580	8530	3660	8610	3760	8780	4847	9997

	Одно	жильные каб	ели на ном	инальное	напряжение	20 кВ		
Число х			Расче	етная масс	а, кг/км			
сеч. жилы/	АПвВнг-LS	ПвВнг-LS	АПвП,	ПвП,	АПвПу,	ПвПу,	АПвВ	ПвВ
сеч. экрана,			АПвПг,	ПвПг,	АПвПуг,	ПвПуг,		
MM^2			АПвП2г	ПвП2г	АПвПу2г	ПвПу2г		
1x 50/16	1020	1320	840	1130	890	1180	950	1250
1x 70/16	1140	1570	940	1360	1000	1420	1060	1490
1x 95/16	1280	1870	1070	1650	1130	1710	1200	1790
1x 120/16	1400	2140	1190	1910	1250	1970	1320	2060
1x 150/25	1640	2550	1410	2320	1470	2380	1550	2465
1x 185/25	1810	2950	1570	2710	1640	2770	1720	2860
1x 240/25	2060	3510	1800	3290	1870	3350	1960	3450
1x 300/25	2290	4180	2010	3910	2090	3980	2190	4080
1x 400/35	2740	5090	2440	4800	2520	4870	2630	4980
1x 500/35	3210	6290	2870	5960	2950	6040	3080	6170
1x 630/35	3750	7600	3350	7290	3470	7380	3620	7520
1x 800/35	4320	9250	3890	8890	4010	9000	4180	9140

Таблица 23

	Одно	Одножильные кабели на номинальное напряжение 35 кВ							
Число х			Расче	тная масс	а, кг/км				
сеч. жилы/	АПвВнг-LS	ПвВнг-LS	АПвП,	ПвП,	АПвПу,	ПвПу,	АПвВ	ПвВ	
сеч. экрана,			АПвПг,	ПвПг,	АПвПуг,	ПвПуг,			
MM ²			АПвП2г	ПвП2г	АПвПу2г	ПвПу2г			
1x 50/16	1360	1650	1130	1420	1190	1480	1270	1570	
1x 70/16	1490	1915	1250	1670	1310	1730	1400	1830	
1x 95/16	1650	2240	1400	1980	1460	2040	1555	2140	
1x 120/16	1790	2520	1530	2260	1600	2320	1690	2425	
1x 150/25	2040	2950	1760	2680	1840	2750	1940	2850	
1x 185/25	2230	3370	1950	3080	2020	3160	2120	3260	
1x 240/25	2500	3950	2230	3710	2300	3790	2390	3870	
1x 300/25	2800	4700	2470	4360	2550	4440	2680	4570	
1x 400/35	3280	5635	2920	5280	3010	5360	3150	5500	
1x 500/35	3800	6870	3385	6480	3480	6570	3640	6730	
1x 630/35	4380	8210	3900	7840	4040	7940	4220	8120	
1x 800/35	4950	9900	4480	9440	7680	9660	4840	9800	

				Tpe	кжильные	кабели н	а номина	альное на	пряжение	6 кВ				
Число х						F	Расчетная	і масса , і	кг/км					
сеч. жилы/	АПвВнг-	ПвВнг-	АПвП,	ПвП,	АПвПу,	ПвПу,	АПвВ	ПвВ	АПвБП	ПвБП	АПвБВ	ПвБВ	АПвБВнг-	ПвБВнг-
сеч.экрана, мм ²	LS	LS	АПвПг	ПвПг	АПвПуг	ПвПуг			АПвБПг	ПвБПг			LS	LS
3x 35/16	2079	2741	1897	2560	1976	2638	2031	2693	2396	3058	2591	3254	2677	3340
3x 50/16	2748	3694	2524	3470	2585	3531	2691	3637	3100	4046	3337	4284	3438	4384
3x 70/16	2949	4274	2723	4048	2785	4109	2892	4216	3306	4631	3547	4872	3648	4973
3x 95/16	3305	5102	3067	4865	3133	4930	3247	5045	3689	5487	3945	5743	4049	5847
3x 120/16	3746	6016	3497	5768	3566	5837	3688	5959	4192	6463	4479	6750	4595	6866
3x 150/25	4454	7292	4165	7004	4242	7081	4387	7226	4878	7717	5186	8025	5306	8144
3x 185/25	5068	8569	4765	8266	4847	8348	5002	8503	5526	9027	5855	9356	5977	9478
3x 240/25	6013	10555	5691	10233	5823	10365	5949	10491	6519	11061	6876	11417	7000	11542

Продолжение таблицы 24

	Трехжильные ка	бели на номинально	е напряжение 6 кВ							
Число х		Расчетная масса, кг/км								
сеч. жилы/	ПвВнг(А)-ХЛ	АПвВнг(А)-ХЛ	ПвБВнг(А)-ХЛ	АПвБВнг(А)-ХЛ						
сеч.экрана,										
MM ²										
3x 35/16	3181	2533	4096	3447						
3x 50/16	3700	2828	4664	3792						
3x 70/16	4609	3329	5587	4307						
3x 95/16	5681	3916	6806	5041						
3x 120/16	6698	4492	7830	5624						
3x 150/25	7971	5199	9179	6407						
3x 185/25	9352	5890	10629	7167						
3x 240/25	11523	6997	12916	8389						
3x300/25	13911	8163	15419	9671						

		Трехжильные кабели на номинальное напряжение 10 кВ												
Число х						F	Расчетная	і масса , і	кг/км					
сеч. жилы/	АПвВнг-	ПвВнг-	АПвП,	ПвП,	АПвПу,	ПвПу,	АПвВ	ПвВ	АПвБП	ПвБП	АПвБВ	ПвБВ	АПвБВнг-	ПвБВнг-
сеч.экрана,	LS	LS	АПвПг	ПвПг	АПвПуг	ПвПуг			АПвБПг	ПвБПг			LS	LS
MM^2														
3x 50/16	2756	3703	3108	4055	2624	3570	2699	3645	3108	4055	3346	4292	3446	4393
3x 70/16	3227	4551	3615	4940	3086	4411	3169	4494	3615	4940	3873	5198	3978	5302
3x 95/16	3718	5516	4173	5970	3607	5405	3660	5458	4173	5970	4464	6262	4581	6379
3x 120/16	4243	6514	4667	6938	4069	6340	4177	6447	4667	6938	4975	7246	5094	7365
3x 150/25	7928	7763	5384	8223	4743	7582	4859	7697	5384	8223	5713	8552	5835	8673
3x 185/25	5569	9070	6063	9564	5381	8882	5504	9005	6063	9564	6412	9913	6536	10037
3x 240/25	6496	11037	7034	11576	6300	10842	6433	10975	7034	11576	7409	11951	7534	12076

Продолжение таблицы 24

	Трехжильные каб	бели на номинальное	е напряжение 10 кВ	3						
Число х		Расчетная масса, кг/км								
сеч. жилы/	ПвВнг(А)-ХЛ	АПвВнг(А)-ХЛ	ПвБВнг(А)-ХЛ	АПвБВнг(А)-ХЛ						
сеч.экрана,										
\mathbf{MM}^2										
3x 35/16	3641	2991	4439	3789						
3x 50/16	4185	3311	5176	4303						
3x 70/16	5068	3788	6189	4909						
3x 95/16	6240	4474	7384	5618						
3x 120/16	7233	5021	8441	6230						
3x 150/25	8535	5763	9821	7048						
3x 185/25	9952	6485	11306	7838						
3x 240/25	12101	7574	13562	9034						
3x300/25	14384	8629	15943	10188						

		Трехжильные кабели на номинальное напряжение 20 кВ												
Число х						F	Расчетная	і масса , і	кг/км					
сеч. жилы/	АПвВнг-	ПвВнг-	АПвП,	ПвП,	АПвПу,	ПвПу,	АПвВ	ПвВ	АПвБП	ПвБП	АПвБВ	ПвБВ	АПвБВнг-	ПвБВнг-
сеч.экрана,	LS	LS	АПвПг	ПвПг	АПвПуг	ПвПуг			АПвБПг	ПвБПг			LS	LS
MM^2						-								
3x 50/16	3745	4691	3463	4405	3573	4520	3678	4624	4156	5102	4456	5402	4574	5520
3x 70/16	4284	5609	3986	5311	4105	5430	4218	5543	4731	6056	5053	6378	5174	6499
3x 95/16	4840	6638	4530	6327	4655	6453	4775	6573	5319	7116	5658	7456	5782	7579
3x 120/16	5362	7633	5040	7315	5172	7445	5298	7569	5868	8139	6224	8495	6348	8619
3x 150/25	6110	8949	5775	8611	5914	8753	6048	8887	6653	9492	7031	9869	7156	9994
3x 185/25	6822	10323	6475	9976	6621	10122	6763	10264	7401	10902	7799	11300	7924	11425
3x 240/25	7834	12376	7473	12014	7628	12170	7780	12321	8450	13002	8883	13425	9008	13550

Таблица 27

	Трехжильные кабели на номинальное напряжение 35 кВ													
Число х						F	Расчетная	і масса , і	кг/км					
сеч. жилы/	АПвВнг-	ПвВнг-	АПвП,	ПвП,	АПвПу,	ПвПу,	АПвВ	ПвВ	АПвБП	ПвБП	АПвБВ	ПвБВ	АПвБВнг-	ПвБВнг-
сеч.экрана,	LS	LS	АПвПг	ПвПг	АПвПуг	ПвПуг			АПвБПг	ПвБПг			LS	LS
MM^2					_									
3x 50/16	5384	6331	5054	6002	5190	6137	5322	6268	5914	6860	6284	7230	6409	7355
3x 70/16	6018	7342	5674	6998	5818	7143	5958	7282	6586	7911	6977	8302	7103	8428
3x 95/16	6662	8459	6308	8105	6458	8256	6605	8402	7263	9061	7673	9471	7798	9596
3x 120/16	7260	9531	6897	9163	7054	9325	7206	9477	7892	10162	8317	10588	8442	10713

Таблица 28

Расчетная масса медного экрана, кг/км

Сечение медного экрана, мм ²							
16	25	35	50	70	95	120	
155	240	330	470	645	875	1110	

Для определения расчетной массы кабелей с сечением медного экрана неуказанного в табл. 20, 21, 22, 23, 24, 25, 26, 27 необходимо из расчетной массы кабеля в табл. 20, 21, 22, 23, 24, 25, 26, 27 вычесть массу стандартного сечения экрана табл. 28 и прибавить массу экрана из табл. 28.

Приложение 5

Электрическое сопротивление постоянному току жил кабелей при температуре 20 $^{\circ}$ C.

Таблица 29

Сечение, мм ²	Сопротивление медной жилы, Ом	Сопротивление алюминиевой жилы, Ом
35	0,524	0,868
50	0,387	0,641
70	0,268	0,443
95	0,193	0,320
120	0,153	0,253
150	0,124	0,206
185	0,0991	0,164
240	0,0754	0,125
300	0,0601	0,100
400	0,0470	0,0778
500	0,0366	0,0605
630	0,0280	0,0464
800	0,0221	0,0367

Сопротивление проводника зависит от температуры окружающей среды. Сопротивление при определенной температуре рассчитывается следующим образом:

Медь:
$$R\delta = R_{20} \cdot \frac{234,5+\delta}{254,5}$$

Алюминий:
$$R\delta = R_{20} \cdot \frac{228 + \delta}{248}$$

где
$$\delta$$
- текущая температура жилы R_{20} - сопротивление проводника при $20^{0}C$ (Ом/км) R_{δ} - сопротивление проводника при δ ^{0}C (Ом/км)

Электрическое сопротивление жил кабелей переменному току при температуре 90С.

Таблица 30

Сечение,	Электрическое сопротивление				
MM^2	переменному току при 90°C, Ом/км				
	Медные жилы	Алюминиевые			
		Жилы			
35	0.668	1.113			
50	0.494	0.822			
70	0.342	0.568			
95	0.247	0.411			
120	0.196	0.325			
150	0.159	0.265			
185	0.128	0.211			
240	0.098	0.161			
300	0.079	0.130			
400	0.063	0.102			
500	0.051	0.0804			
630	0.041	0.0639			
800	0.032	0.0505			

Приложение 6

Индуктивность кабелей

Таблица 31

Ном.	Индуктивность одножильных кабелей, мГн/км,							
сечение	на номинальное напряжение, кВ							
жилы,		6	10		20		35	
MM^2	треуг.	плоск.	треуг.	плоск.	треуг.	плоск.	Треуг.	плоск.
35	0.405	0.54	0,424	0,559	ı	-	-	-
50	0.384	0.519	0.400	0.535	0.427	0.563	0.460	0.596
70	0.362	0.496	0.376	0.511	0.402	0.537	0.434	0.569
95	0.339	0.473	0.353	0.487	0.377	0.512	0.407	0.542
120	0.325	0.459	0.338	0.472	0.361	0.495	0.390	0.525
150	0.311	0.444	0.323	0.457	0.345	0.479	0.372	0.507
185	0.300	0.433	0.312	0.445	0.333	0.466	0.359	0.493
240	0.290	0.423	0.300	0.433	0.320	0.453	0.346	0.480
300	0.278	0.410	0.285	0.418	0.304	0.437	0.329	0.462
400	0.271	0.403	0.275	0.407	0.294	0.426	0.316	0.449
500	0.265	0.397	0.267	0.398	0.284	0.416	0.306	0.439
630	0.257	0.388	0.262	0.394	0.278	0.410	0.297	0.430
800	0.250	0.381	0.252	0.383	0.263	0.394	0.281	0.413

Индуктивность рассчитана для следующих условий прокладки: при прокладке треугольником кабели проложены вплотную, при прокладке в плоскости — на расстоянии одного диаметра кабеля.

Расчетная формула:

$$L = \frac{\mu_0}{2\pi} \cdot l \cdot \ln\left(\frac{1}{4} + \frac{a}{r}\right) \quad ,$$

где

а – расстояние между фазами, мм

r – радиус жилы, мм

l – длина кабельной линии, м

 μ_{θ} — магнитная проницаемость воздуха

Таблица 32

Ном. сечение	Индуктивность трехжильных кабелей, мГн/км,						
жилы, мм ²		на номинальное напряжение, кВ					
	6	6 10 20					
35	0.329	0,350	-	-			
50	0.313	0.331	0.368	0.411			
70	0.295	0.312	0.346	0.387			
95	0.278	0.294	0.325	0.363			
120	0.268	0.282	0.312	0.348			
150	0.257	0.27	0.298	-			
185	0.25	0.262	0.288	-			
240	0.244	0.254	0.278	-			
300	0,225	0,246	-	-			

Реактивное индуктивное сопротивление

Таблица 33

Ном.	Реактивное индуктивное сопротивление одножильных кабелей, Ом/км,							
сечение	на номинальное напряжение, кВ							
жилы,	6		10		20		35	
MM^2	треуг.	плоск.	треуг.	плоск.	треуг.	плоск.	треуг.	плоск.
35	0.127	0.17	0,133	0,175	ı	-	ı	-
50	0.121	0.163	0.126	0.168	0.134	0.177	0.144	0.187
70	0.114	0.156	0.118	0.16	0.126	0.169	0.136	0.179
95	0.106	0.149	0.111	0.153	0.118	0.161	0.128	0.17
120	0.102	0.144	0.106	0.148	0.113	0.155	0.122	0.165
150	0.098	0.139	0.101	0.143	0.108	0.15	0.117	0.159
185	0.094	0.136	0.098	0.14	0.105	0.146	0.113	0.155
240	0.091	0.133	0.094	0.136	0.100	0.142	0.109	0.151
300	0.087	0.129	0.089	0.131	0.095	0.137	0.103	0.145
400	0.085	0.127	0.086	0.128	0.092	0.134	0.099	0.141
500	0.083	0.125	0.084	0.125	0.089	0.131	0.096	0.138
630	0.081	0.122	0.082	0.124	0.087	0.129	0.093	0.135
800	0.079	0.12	0.079	0.120	0.083	0.124	0.088	0.130

Таблица 34

Ном. сечение	Реактивное индуктивное сопротивление трехжильных кабелей,					
жилы, мм ²	Ом/км, на номинальное напряжение, кВ					
	6	6 10 20				
35	0.103	0,109	-	-		
50	0.098	0.104	0.116	0.129		
70	0.093	0.098	0.109	0.122		
95	0.087	0.092	0.102	0.114		
120	0.084	0.089	0.098	0.109		
150	0.081	0.085	0.094	-		
185	0.079	0.082	0.090	-		
240	0.077	0.080	0.087	-		
300	0,070	0,077	-	-		

Таблица 35 Емкостные характеристики кабелей

Приложение 7

Ном. Номиналь-Реактивное Ток заряда Емкостной Емкость, ное мкФ/км емкостное на фазу, ток напряжение, сечение сопротивле А/км короткого кВ жилы, \mathbf{MM}^2 ние, замыкания кОм/км на землю, $A/\kappa M$ 35 0.263 12.11 0.48 1.43 0.53 1.59 0.292 10.91 50 70 0.331 9.62 0.60 1.80 95 8.38 0.69 0.380 2.07 2.27 120 0.418 7.62 0.76 150 6.85 0.84 2.53 0.465 6 185 0.506 6.29 0.92 2.75 240 0.543 5.87 0.98 2.95 300 0.568 5.61 1.03 3.09 3.23 5.36 400 0.594 1.08 500 1.12 3.36 0.617 5.16 630 0.681 4.68 1.23 3.70 800 0.769 $4.\overline{14}$ 1.39 4.18 35 0.208 15.30 0,38 1,13 0.42 50 0.229 13.91 1.25 70 0.47 1.40 0.258 12.34 95 0.294 10.83 0.53 1.60 0.323 9.86 0.59 1.76 120 1.94 150 0.357 8.92 0.65 10 185 0.387 8.23 0.70 2.10 240 0.429 7.42 0.78 2.33 300 0.4786.66 0.87 2.600.531 6.00 0.96 2.89 400 500 0.584 5.45 1.06 3.18 630 0.644 4.95 3.50 1.17 1.32 800 4.38 3.95 0.727

продолжение приложения 7 Продолжение таблицы 35

Ном.	Номиналь	Емкость,	Реактивное	Ток заряда	Емкостной
напряже-	ное	мкФ/км	емкостное	на фазу,	ток
ние,	Сечение		сопротивле	А/км	короткого
кВ	жилы, мм ²		ние,		замыкания
			кОм/км		на землю,
					А/км
	50	0.161	19.78	0.58	1.75
	70	0.180	17.69	0.65	1.96
	95	0.202	15.77	0.73	2.20
	120	0.220	14.48	0.80	2.39
	150	0.242	13.16	0.88	2.63
	185	0.261	12.20	0.95	2.84
20	240	0.287	11.10	1.04	3.12
	300	0.317	10.05	1.15	3.45
	400	0.350	9.10	1.27	3.81
	500	0.383	8.32	1.39	4.17
	630	0.421	7.56	1.53	4.58
	800	0.472	6.75	1.71	5.13
	50	0.121	26.32	0.77	2.30
	70	0.134	23.77	0.85	2.55
	95	0.149	21.37	0.95	2.84
	120	0.161	19.78	1.02	3.06
	150	0.175	18.20	1.11	3.33
35	185	0.187	17.03	1.19	3.56
	240	0.205	15.54	1.30	3.90
	300	0.225	14.15	1.43	4.28
	400	0.246	12.95	1.56	4.68
	500	0.268	11.88	1.70	5.10
	630	0.292	10.91	1.85	5.56
	800	0.326	9.77	2.07	6.21

При составлении данной инструкции была использована инструкция, разработанная авторским коллективом в составе:

Каменский М.К., Макаров Л.Е., Фурсов П.В.,ОАО "ВНИИКП".

Мирзоев А.Г., АО "Фирма ОРГРЭС"

Редактор: Королев С.Г., Департамент электрических сетей РАО "ЕЭС России".